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Inverse Scattering – Imaging with Waves

From the knowledge of scattered field

reconstruct the perturbation



Imaging Method

Typically measurements due to various probing is used:

Far Field Real Part Far Field Imaginary Part

Appropriate superposition of measurements leads to an imaging method.
In the frequency domain, certain superpositions lead to non-scattering.

incident field total field scattered field
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Scattering by an Inhomogeneous Media

∂D is Lipschitz, k = ω/cb, ρb = 1

n ∈ L∞(R3), n = n1 +
i
k n2, n1 > 0 and n2 ≥ 0.

Supp(n − 1) is bounded

The incident field v satisfies the Helmholtz equation

∆v + k2v = 0 in R3

The total field u = w + v satisfies

∆u + k2nu = 0 in R3

The scattered field w is outgoing, i.e. it satisfies the Sommerfeld
radiation condition



Scattering by an Inhomogeneous Media

Take plane incident wave

v = ui (x ; ŷ , k) := e ikx·ŷ

u := u(x ; ŷ , k) corresponding total field

w := us(x ; ŷ , k) corresponding scattered field

The outgoing scattered field satisfies

w(x) =
e ik|x|

|x |
w∞(x̂) + O

(
1

|x |2

)
as |x | → ∞, x̂ = x/|x |

w∞(x̂) defined on the unit sphere S2 is called the far field pattern.

(Rellich’s Lemma)

w∞(x̂) = 0 ∀ x̂ ∈ S2 =⇒ w(x) = 0 ∀ x ∈ R3 \ D



Far Field Operator

Far Field Real Part Far Field Imaginary Part

Far Field Operator (aka Relative Scattering Operator

Fk : L2(S) → L2(S), (Fkg) (x̂) :=

∫
S

g(ŷ)u∞(x̂ ; ŷ , k) ds

Fg = w∞
g where w∞

g is the far field pattern of the scattered field wg

with incident wave vg (x) :=

∫
S
g(ŷ)e ikx·ŷ dŷ Herglotz wave function



Far Field Operator

Is the far field operator Fk : L2(S) → L2(S) injective?

Kirsch,(1986) Colton-Monk (1987)

Fkg = 0 if and only if there exists a Herglotz function

vg (x) :=

∫
S
g(ŷ)e ikx·ŷ dŷ such that w∞

g = 0, hence the corresponding

scattered field wg = 0 outside D.

Definition

k > 0 is called non-scattering wave number for given inhomogeneity n,D
if Fk is not injective.

An inhomogeneity n,D that admits a non-scattering wave number is
referred to as non-scattering inhomogeneity, and vg for which Fg = 0 as
non-scattering incident wave.



Non-scattering Inhomogeneity (∗)

incident field total field scattered field

Simple calculations show that F ∗g = RFRg where (Rh)(x̂) := h(−x̂).
Thus we have proven:

Theorem

The far field operator Fk : L2(S) → L2(S) is injective and has dense range
if and only if k > 0 is not a non-scattering wave number.



Scattering by an Inhomogeneous Media

The scattered field w ∈ H2
loc(R3) due to a Herglotz wave function vg

satisfies

∆w + k2nw = k2(1− n)vg in R3 plus SRC

and of course we have ∆vg + k2vg = 0 in R3

O = Supp(n − 1)

Let G be the unbounded component of O
c

We call D := G
c
, and D ⊂ Ω

Now assume that the incident field vg does
not scatter, this is

w ≡ 0 in R3 \ D

The equation for w implies w =
∂w

∂ν
= 0 on ∂D



Non-scattering inhomogeneity

(Non-scattering inhomogeneity)

Given the inhomogeneous media (n,D), we say k is a non-scattering
wave number if the following problem has solution

∆w + k2nw = k2(1− n)vg in D

w =
∂w

∂ν
= 0 on ∂D

with vg (x) =

∫
S
g(ŷ)e ikx·ŷds, satisfying ∆vg + k2vg = 0 in R3

Over-determined problem!!!

To mitigate this, instead of vg we consider L2(D) (distributional)
solutions to the equation

∆v + k2v = 0 in D



The transmission Eigenvalue Problem

(Transmission eigenvalue problem for w and v)

Given (n,D), we say k is a transmission eigenvalue if the following
problem has non-trivial solution w ∈ H2

0 (D) and v ∈ L2(D)

∆w + k2nw = k2(1− n)v in D

∆v + k2v = 0 in D

w =
∂w

∂ν
= 0 on ∂D

(Transmission eigenvalue problem for u := w + v and v)

Find nonzero u ∈ L2(D) and v ∈ L2(D), such that u − v ∈ H2(D)
satisfying

∆v + k2v = 0 and ∆u + k2nu = 0 in D

u − v = 0 and
∂u

∂ν
− ∂v

∂ν
= 0 on ∂D



The Transmission Eigenvalue Problen

Non-scattering wave numbers are subset of real transmission
eigenvalues.

A real transmission eigenvalue is non-scattering wave number if part
v of the eigenfunction is a Herglotz wave function, (more generally
is extendable as solution to the Helmholtz equation in R3).

A non-scattering wave number is related to a scattering experiment.
However, the existence of non-scattering wave numbers generically
implies certain regularity of D and n.

We will study the Transmission Eigenvalue Problem.



Spherical Geometry

D := B1(0), n(r) real valued positive, and separate variables

v =
∞∑
ℓ

aℓjℓ(k |x |)Yℓ(x̂), u =
∞∑
ℓ

uℓ(r)Yℓ(x̂)

where Yℓ(x̂) denotes 2ℓ+ 1 spherical harmonics of order ℓ ∈ N which all
together form a Fourier basis in L2(S)2, jℓ(r) are spherical Bessel
functions and uℓ(r) := uℓ(r ; k , n) solves (regular at r = 0) Bessel
Equation

z ′′ +
2

r
+

(
k2n(r)− ℓ(ℓ+ 1)

r2

)
z = 0.

Applying the boundary conditions at r = 1 gives that all transmission
eigenvalues are the zeros

dℓ(k) = Det

(
uℓ(1; k , n) jℓ(k)
u′ℓ(1; k , n) kj ′ℓ(k)

)
= 0



Spherically Symmetric Media

All real transmission eigenvalues are non-scattering wave numbers
since vℓ = jℓ(k|x |)Yℓ(x̂) is a Herglotz wave functions.

The only non-scattering incident waves are vℓ = jℓ(k |x |)Yℓ(x̂).

Each vℓ is not scattered at an infinite set of wave numbers k > 0
with accumulation point +∞

Thus, the scattering operator Fk is non-injective at an infinite
countable set of wave numbers.

D. Colton and R. Kress (2019), Inverse Acoustic and Electromagnetic Scattering Theory, Springer, 4rth
Edition.

Spherically symmetric configuration is unstable.

Michael Vogelius and Jingni Xiao (2021), Finiteness results concerning non-scattering wave numbers

for incident plane and Herglotz waves, SIAM J. Math Analysis.



TE for Spherically Symmetric Media
Consider radially symmetric eigenfunction i.e. for ℓ = 0, thus

v(x) := a0j0(kr) = a0
sin kr

kr
=

a0
4π

∫
S
e ikx·ŷdsy and u(x) = b0

y(r)

r

and y ′′ + k2n(r)y = 0 y(0) = 0, y ′(0) = 1

d(k) =

∣∣∣∣∣ y(1; k , n)
sin k

k
y ′(1; k , n) cos k

∣∣∣∣∣ = 0

To understand the solution y(r) we use the Liouville transformation

ξ(r) :=

∫ r

0

√
n(ρ) dρ z(ξ) := n(r)1/4y(r), at r = r(ξ)

to arrive at

z ′′ + (k2 − p(ξ))z = 0 z(0) = 0, z ′(0) = n(0)−1/4

p(ξ) =
n′′(r)

4n(r)2
− 5

16

n′(r)2

n(r)3



TE for Spherically Symmetric Media
The problem for z can be written as Volterra integral equation

z(ξ) =
sin kξ

kn(0)1/4
+

1

k

∫ ξ

0

sin k(η − ξ)z(η)p(η) dη

This can be solved by successive approximations which gives for k > 0

z(ξ) =
sin kξ

kn(0)1/4
+ O

(
1

k2

)
and z ′(ξ) =

cos kξ

n(0)1/4
+ O

(
1

k

)
To fix the idea let n(1) ≥ 1 and let

δ :=

∫ 1

0

√
n(t)dt

and going back to the original variable we obtain

d(k) =
1

k[n(0)n(1)]1/4

(√
n(1) sin k cos(kδ)− cos k sin(kδ)

)
+ O

(
1

k2

)

=
1

k[n(0)n(1)]1/4

(√
n(1) sin(k(1− δ))− (1−

√
n(1)) cos k sin(kδ)

)
+O

(
1

k2

)



TE for Spherically Symmetric Media

Theorem

Let n ∈ C 2[0, 1] be positive, and either
∫ 1

0

√
n(t)dt ̸= 1 or n(1) ̸= 1.

Then there exists an infinite number of real eigenvalues k > 0
accumulating at +∞.

In the case when n ̸= 1 is a positive constant then

kd(k) = sin
√
nk cos k −

√
n cos

√
nk sin k = 0

Examples

When n(r) = 1/4 then d(k) = − 2
3 sin

3
(
k
2

)
hence it has infinitely many real zeros and no complex zeros.

When n(r) = 4/9 then d(k) = − 1
k sin

3
(
k
3

) [
3 + 2 cos

(
2k
3

)]
hence it has infinitely many real and infinitely many complex zeros



TE for Spherically Symmetric Media

Theorem (Colton-Leung (2015))

Let n ̸= 1 be a positive constant. If
√
n is an integer or reciprocal of an

integer then no complex eigenvalues with radial eigenfunctions exits.
Otherwise, there exists infinitely many complex eigenvalues.

For a proof see also Chapter 7 in

A. Kirsch (2022), An introduction to the mathematical theory of inverse problems, 3rd Edition Springer.

The transmission eigenvalue problem is non-selfadjoint

More on the transmission eigenvalue problem for spherical symmetric
media see Prof. Gintides lecture.
Aktusun-Gintides-Papanicolaou (2011), Cakoni-Colton-Gintides (2011), Leung-Colton (2013, 2015),

Colton-Leung-Meng (2015), Petkov-Vodev (2016) .....



Transmission Eigenvalue Problem

Transmission Eigenvalue Problem in General



The transmission Eigenvalue Problem
Given (n,D), n ∈ L∞(D), and let n∗ = inf

x∈D
n(x), n∗ = sup

x∈D
n(x).

Formulation 1

Find nonzero w ∈ H2
0 (D) and v ∈ L2(D) satisfying

∆w + k2nw = k2(1− n)v in D

∆v + k2v = 0 in D

w =
∂w

∂ν
= 0 on ∂D

Formulation 2

Find nonzero u ∈ L2(D) and v ∈ L2(D) with u − v ∈ H2(D) satisfying

∆v + k2v = 0 and ∆u + k2nu = 0 in D

u − v = 0 and
∂u

∂ν
− ∂v

∂ν
= 0 on ∂D



The Transmission Eigenvalue Problen

Exercise 1: Prove that Formulation 1 and Formulation 2 are equivalent.

There is a third formulation
Cakoni-Kress (2017), Vodev (2018), Ambrose-Cakoni-Moskow (2022.

Formulation 3

TE can be also viewed as values of k ∈ C for which the operator

Nk,n −Nk,1 has non-trivial kernel

where the Dirichlet to Neumann operator

Nk,b : Hs+1/2(∂D) → Hs−1/2(∂D) , s ∈ (−1, 1) maps

f 7→ ∂φ

∂ν
with φ satisfying

∆φ+ k2bφ = 0 in D φ = f on ∂D

Exercise 2: Prove that Formulation 3 and Formulation 2 are equivalent.



The transmission Eigenvalue Problem (∗)
Given D, n = n1 +

i
k n2 n ∈ L∞(D), n2 ≥ 0

Theorem

If ℑ(n2(x)) > 0 for x on some open set A ⊂ D then all transmission
eigenvalues are complex.

Proof: From Formulation 2 we have for k > 0 and w ∈ H2(R3)

∆w + k2w = k2(1 − n)u in D and w = 0 inR3 \ D

Multiplying by u the conjugate and integrate over D gives∫
D
u(∆w + k2w) dx = k2

∫
D
(1 − n)|u|2 dx but

∫
D
u(∆w + k2w) dx =

∫
D
u(∆w + k2nw) dx + k2

∫
D
(1 − n)uwdx

k2
∫
D
(1 − n)|u|2 dx = k2

∫
D
(1 − n)uwdx = k2

∫
D
(1 − n)|u|2dx − k2

∫
D
(1 − n)uvdx

= k2
∫
D
(1 − n)|u|2dx − k2

∫
D
(∆w + k2w)vdx = k2

∫
D
(1 − n)|u|2dx.

Taking the imaginary part gives ∫
D
n2|u|

2dx = 0 =⇒ u = 0 on A

Unique continuation gives u = 0 in D and hence v = 0.
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