The transmission Eigenvalue Problem

From now on we assume n real and let $n_* = \inf_{x \in D} n(x)$, $n^* = \sup_{x \in D} n(x)$.

Assumption

To fix the idea we assume $n_* > 1$. Similar results can be obtain for $0 < n_* \le n^* < 1$.

Dividing by n-1 in formulation 1 and applying $(\Delta + k^2)$ on both sides we obtain: Find $w \in H_0^2(D)$ satisfying fourth order equation

$$(\Delta + k^2) \frac{1}{n-1} (\Delta + k^2 n) w = 0$$

or in the variational form

$$\int_{\Omega} \frac{1}{n-1} (\Delta w + k^2 n w) (\Delta \varphi + k^2 \varphi) \, dx = 0 \qquad \text{for all } \varphi \in H_0^2(D)$$

Expand the above and define the bounded linear selfadjoint operators based on Riesz Representation Theorem

$$\begin{split} (\mathit{Tw},\varphi)_{H^2} &= \int_D \frac{1}{n-1} \Delta w \, \Delta \overline{\varphi} \, \mathrm{d}x \ \, \text{coercive} \ \, (\mathit{Tw},\varphi)_{H^2(D)} \geq \frac{1}{n_*-1} \|w\|_{H^2}^2 \\ &(\mathit{T}_1 w,\varphi)_{H^2} = -\int_D \frac{1}{n-1} \left(\Delta w \, \overline{\varphi} + w \, \Delta \overline{\varphi} \right) \, \mathrm{d}x - \int_D \nabla w \cdot \nabla \overline{\varphi} \, \mathrm{d}x \\ &(\mathit{T}_2 w,\varphi)_{H^2(D)} \, = \int_D \frac{n}{n-1} w \, \overline{\varphi} \, \mathrm{d}x \quad \, \text{non-negative}. \end{split}$$

Letting $k^2 := \tau$ we obtain the quadratic pencil eigenvalue problem

$$Tw - \tau T_1 w + \tau^2 T_2 w = 0, \qquad w \in H_0^2(D)$$
 or $w - \tau K_1 w + \tau^2 K_2 w = 0, \qquad w \in H_0^2(D)$

with selfadjoint compact operators

$$K_1 = T^{-1/2} T_1 T^{-1/2}$$
 and $K_2 = T^{-1/2} T_2 T^{-1/2}$

The transmission eigenvalue problem can be transformed to the eigenvalue problem

$$(\mathbb{K} - \xi \mathbb{I})U = 0, \qquad U = \begin{pmatrix} w \\ \tau K_2^{1/2} w \end{pmatrix}, \qquad \xi := \frac{1}{\tau}$$

for the non-selfadjoint compact operator

$$\mathbb{K}\colon H^2_0(D) imes H^2_0(D) o H^2_0(D) imes H^2_0(D)$$
 given by

$$\mathbb{K} := \left(\begin{array}{cc} \mathcal{K}_1 & -\mathcal{K}_2^{1/2} \\ \mathcal{K}_2^{1/2} & 0 \end{array} \right).$$

However from here one can see that the transmission eigenvalues form a discrete set with $+\infty$ as the only possible accumulation point.

To obtain existence of transmission eigenvalues, Faber-Krahn type inequalities, and monotonicity properties for real eigenvalues $\tau>0$, we rewrite the transmission eigenvalue problem in the form

$$(\mathbb{A}_{\tau} - \tau \mathbb{B})w = 0 \quad \text{in } H_0^2(D)$$

$$(\mathbb{A}_{\tau} w, \varphi)_{H^2(D)} = \int_D \frac{1}{n-1} (\Delta w + \tau w) (\Delta \varphi + \tau \varphi) dx + \tau^2 \int_D w \cdot \varphi dx$$

$$(\mathbb{B} w, \varphi)_{H^2(D)} = \int_D \nabla w \cdot \nabla \varphi dx$$

Observe that

- The mapping $\tau \to \mathbb{A}_{\tau}$ is continuous from $(0, +\infty)$ to the set of self-adjoint coercive operators from $H_0^2(D) \to H_0^2(D)$.
- $\mathbb{B}: H_0^2(D) \to H_0^2(D)$ is self-adjoint, compact and non-negative.

Coercivity of $\mathbb{A}_{ au}$

Let
$$\gamma = \frac{1}{n^* - 1}$$

$$\begin{split} (\mathbb{A}_{\tau} w, w)_{H^{2}(D)} & \geq & \gamma \| \Delta w + \tau w \|_{L^{2}}^{2} + \tau^{2} \| w \|_{L^{2}}^{2} \\ & \geq & \gamma \| \Delta w \|_{L^{2}}^{2} - 2 \gamma \tau \| \Delta w \|_{L^{2}} \| w \|_{L^{2}} + (\gamma + 1) \tau^{2} \| w \|_{L^{2}}^{2} \\ & = & \epsilon \left(\tau \| w \|_{L^{2}} - \frac{\gamma}{\epsilon} \| \Delta w \|_{L^{2}(D)} \right)^{2} + \left(\gamma - \frac{\gamma^{2}}{\epsilon} \right) \| \Delta w \|_{L^{2}(D)}^{2} \\ & + & (1 + \gamma - \epsilon) \tau^{2} \| w \|_{L^{2}}^{2} \\ & \geq & \left(\gamma - \frac{\gamma^{2}}{\epsilon} \right) \| \Delta w \|_{L^{2}(D)}^{2} + (1 + \gamma - \epsilon) \tau^{2} \| w \|_{L^{2}}^{2} \end{split}$$

for some $\gamma < \epsilon < \gamma + 1$. Furthermore, since $\nabla w \in H^1_0(D)^2$, using the Poincaré inequality we have that

$$\|\nabla w\|_{L^{2}(D)}^{2} \leq \frac{1}{\lambda_{1}(D)} \|\Delta w\|_{L^{2}(D)}^{2}.$$

Hence we can conclude $(\mathbb{A}_{\tau}w,w)_{H^2(D)} \geq C_{\tau}\|w\|_{H^2(D)}^2$ for some constant $C_{\tau}>0$

As for $\mathbb B$: The compact embedding of $H^2(D)$ into $H^1(D)$ and the fact that $\nabla w \in H^1_0(D)$ imply that $\mathbb B: H^2_0(D) \to H^2_0(D)$ is compact since $\|\mathbb Bw\|_{H^2(D)} \le c \|w\|_{H^1(D)}$.

Now we consider the generalized eigenvalue problem

$$(\mathbb{A}_{\tau} - \lambda(\tau)\mathbb{B})u = 0$$
 in $H_0^2(D)$

Note that $k^2=\tau$ is a transmission eigenvalue if and only if satisfies $\lambda(\tau)=\tau$

For a fixed $\tau > 0$ there exists an increasing sequence of eigenvalues $\lambda_j(\tau)_{j \geq 1}$ such that $\lambda_j(\tau) \to +\infty$ as $j \to \infty$.

These eigenvalues satisfy

$$\lambda_j(\tau) = \min_{W \subset \mathcal{U}_j} \left(\max_{u \in W \setminus \{0\}} \frac{(\mathbb{A}_\tau u, u)}{(\mathbb{B}u, u)} \right).$$

 \mathcal{U}_j denotes the set of all j-dimensional subspaces W of $H^2_0(D)$ such that $W \cup \mathsf{Kern}(\mathbb{B}) = \{0\}$

Hence, if there exists two positive constants $\tau_0 > 0$ and $\tau_1 > 0$ such that both Assumptions holds

- 1 $\mathbb{A}_{\tau_0} \tau_0 \mathbb{B}$ is positive on $H_0^2(D)$
- \mathbb{Z} $\mathbb{A}_{\tau_1} \tau_1 \mathbb{B}$ is non positive on a k dimensional subspace of $H_0^2(D)$

then each of the equations $\lambda_i(\tau) = \tau$ for $j = 1, \dots, k$, has at least one solution in $[\tau_0, \tau_1]$ meaning that there exists k transmission eigenvalues (counting multiplicity) within the interval $[\tau_0, \tau_1]$.

See e.g. Section 4.1 in

F. CAKONI, D. COLTON AND H. HADDAR (2023), Inverse Scattering Theory and Transmission Eigenvalues, CBMS-NSF, SIAM Publication, 2nd Edition,

It is now obvious that determining such constants τ_0 and τ_1 provides the existence of transmission eigenvalues as well as the desired bounds on the eigenvalues.

Obviously we have

$$\left((\mathbb{A}_{\tau}-\tau\mathbb{B})w,w\right):=\int\limits_{D}\frac{1}{n-1}\left|\left(\Delta w+\tau nw\right)\right|^{2}dx+\tau\int\limits_{D}\left(|\nabla w|^{2}-\tau n|w|^{2}\right)dx.$$

Poincare inequality yields the Faber-Krahn type inequality for the first real transmission eigenvalue (not isoperimetric)

$$\tau_1 > \frac{\lambda_1(D)}{\sup_D \frac{n}{n}}.$$

where $\lambda_1(D)$ is the first Dirichlet eigenvalue of $-\Delta$ in D.

- **1** In particular all $\tau_0 \in (0, \lambda_1(D)/\sup_D n)$ satisfies Assumption 1.
- 2 Concerning Assumption 2

Take τ_1 be the square of the first real eigenvalue of a ball $B_r \subset D$ of radius r and constant refractive index n_* .

Let u_r be the corresponding eigenfunction and denote $\tilde{u}_r \in H_0^2(D)$ its extension by zero to the whole of D. Then

$$(\mathbb{A}_{\tau_1}\tilde{u}_r - \tau_1 \mathbb{B}\tilde{u}_r, \tilde{u}_r) \leq 0.$$

If r is such that m(r) disjoint balls can be included in D, the above condition is satisfied in a m(r)-dimensional subspace of $H_0^2(D)$

There exists m(r) transmission eigenvalues (counting multiplicity). As $r \to 0$, $m(r) \to \infty$ and since the multiplicity of an eigenvalue is finite we prove the existence of an infinite set of real transmission eigenvalues

Monotonicity Properties

 $n^* := \sup_D n$ and $n_* := \inf_D n$, $\tau := k^2$

Theorem (Cakoni-Gintides-Haddar (2010))

If $n \in L^{\infty}(D)$ and $n_* > 1$, then there exists a sequence of real eigenvalues $k_j(n, D)$ accumulating to $+\infty$. Futhermore, and they satisfy monotonicity properties:

$$k_j(n^*, B_1) \le k_j(n^*, D) \le k_j(n(x), D) \le k_j(n_*, D) \le k_j(n_*, B_2)$$

where $B_2 \subset D \subset B_1$ are balls.

Proof: Existence is proven. For simplicity we show the proof of monotonicity for k_1

$$\lambda_{j}(\tau, D, \mathbf{n}(\mathbf{x})) = \min_{\substack{W \in \mathcal{U}_{j} \\ \|\nabla w\|_{l^{2}} = 1}} \max_{\substack{w \in W \\ 1}} \int_{D} \frac{1}{\mathbf{n}(\mathbf{x}) - 1} |\Delta w + \tau w|^{2} dx + \tau^{2} \|w\|_{L^{2}(D)}^{2}$$

 $\forall \ u \in H_0^2(D)$ such that $\|\nabla u\|_{L^2(D)} = 1$ we have

$$\frac{1}{n^* - 1} \|\Delta u + \tau w\|_{L^2(D)}^2 + \tau^2 \|w\|_{L^2(D)}^2 \leq \int_D \frac{1}{n(x) - 1} |\Delta w + \tau w|^2 dx + \tau^2 \|w\|_{L^2(D)}^2 \\
\leq \frac{1}{n_* - 1} \|\Delta w + \tau w\|_{L^2(D)}^2 + \tau^2 \|w\|_{L^2(D)}^2.$$

Proof Cont.

Therefore we have that for an arbitrary au>0

$$\lambda_{1}(\tau, B_{2}, n^{*}) \leq \lambda_{1}(\tau, D, n^{*}) \leq \lambda_{1}(\tau, D, n(x))$$

$$\leq \lambda_{1}(\tau, D, n_{*}) \leq \lambda_{1}(\tau, B_{1}, n_{*}).$$

■ For $\tau_1 := k_1^2(n_*, B_1)$, $B_1 \subset D$, from the proof of existence we have that

$$\lambda_1(\tau_1, D, \mathbf{n}(\mathbf{x})) - \tau_1 \leq 0$$

• On the other hand, for $\tau_0 := k_1^2(\mathbf{n}^*, B_2)$, $D \subset B_2$, we have

$$\lambda_1(\tau_0, B_2, \mathbf{n}^*) - \tau_0 = 0$$

and hence

$$\lambda_1(\tau_0, D, \mathbf{n(x)}) - \tau_0 \geq 0$$

■ Therefore the first eigenvalue $k_1(D, n(x))$ is between $k_1(n^*, B_2)$ and $k_1(n_*, B_1)$.

Inequalities

1 If $1 < \alpha \le n_1(x) \le n_2(x)$ for almost all $x \in D$, then

$$k_j(n_2(x), D) \le k_j(n_1(x), D)$$

2 If $0 < \alpha \le n_1(x) \le n_2(x) \le \beta < 1$ for almost all $x \in D$, then

$$k_j(n_1(x),D) \leq k_j(n_2(x),D).$$

Exercise: Modify the above argument to prove part 1.

Theorem (Theorem 4.18, Cakoni-Colton-Haddar CBMS (2023))

For known D, the constant n is uniquely determined from the corresponding smallest transmission eigenvalue $k_1(n, D) > 0$ provided that it is known a priori that either n > 1 or 0 < n < 1.

Sing Changing n-1

Let \mathcal{N} be a neighborhood of ∂D form inside D, and let

$$n_{\star} = \inf_{x \in \mathcal{N}} n(x)$$
 and $n^{\star} = \sup_{x \in \mathcal{N}} n(x)$

Theorem

Assume that $n \in L^{\infty}(D)$ with $n(x) > n_0 > 0$ for almost all $x \in D$ and either $n^* < 1$ or $n_* > 1$ for some neighborhood $\mathcal N$ of the boundary ∂D . Then the set of transmission eigenvalues is at most discrete with $+\infty$ as the only accumulation point.

Sylvester, SIAM J. Math. Anal., 44 (2012), Kirsch, Math. Acad. Sci. Paris, 354 (2016).

Sketch of the Proof: We work on the space $(w,v) \in X(D) = H_0^2(D) \times L^2(D)$. Find $(w,v) \in X(D)$ suwch that for all $(\psi,\varphi) \in X(D)$

$$\int_{D} (\Delta \overline{\psi} + k^{2} \overline{\psi}) v \, dx + \int_{D} (\Delta w + k^{2} n w) \overline{\varphi} + (n-1) v \overline{\varphi} \, dx$$

Denote

$$\begin{split} \mathcal{A}_k(w,v;\psi,\varphi) &:= \int_D (\Delta \psi + k^2 \psi) v \, dx + \int_D (\Delta w + k^2 n w) \varphi + (n-1) v \varphi \, dx \\ \hat{\mathcal{A}}_k(w,v;\psi,\varphi) &:= \int_D (\Delta \overline{\psi} + k^2 \overline{\psi}) v \, dx + \int_D (\Delta w + k^2 w) \overline{\varphi} + (n-1) v \overline{\varphi} \, dx \end{split}$$

and the corresponding operators by means of Riesz representation theorem

$$\mathcal{A}_k(w,v;\psi,\varphi) = \langle A_k(w,v), (\psi,\varphi) \rangle_{X(D)} \qquad \hat{\mathcal{A}}_k(w,v;\psi,\varphi) = \left\langle \hat{A}_k(w,v), (\psi,\varphi) \right\rangle_{X(D)}$$

Sing Changing n-1 - Proof cont,

Thus we need to study the kernel $A_k(w, v) = 0$.

Step 1: For any two $k_1, k_2 \in \mathbb{C}$, $A_{k_1} - \hat{A}_{k_2}$ and $A_{k_1} - A_{k_2}$ are compact.

Note
$$\left(\mathcal{A}_{k_1} - \hat{\mathcal{A}}_{k_2}\right)\left(w_j, v_j; \psi, \varphi\right) = \left(k_1^2 - k_2^2\right) \int_D \overline{\psi} v_j \, dx + \int_D \left(k_1^2 n - k_2^2\right) w_j \overline{\varphi} \, dx.$$

Step 2: There exists a $\kappa_0>0$ and a constant c>0 s. th. for all $\kappa\geq\kappa_0$

$$\sup_{(\psi,\varphi)\neq 0} \frac{\left|\hat{\mathcal{A}}_{i\kappa}(w,v;\psi,\varphi)\right|}{\|(\psi,\varphi)\|_{X(D)}} \geq c\|(w,v)\|_{X(D)} \qquad \text{for all } (w,v) \in X(D).$$

In particular the operator $\hat{A}_{i\kappa}$ is invertible, A_k is Fredholm of index zero.

(Analytic Fredholm Theory)

Step 3: For some $\kappa > 0$, the operator $A_{i\kappa} : X(D) \to X(D)$ is invertible with bounded inverse. Thus the kernel of A_k is non-zero for at most a discrete set of $k \in \mathbb{C}$ with $+\infty$ as possible accumulation point.

Sing Changing n-1 - Proof cont,

Lemma (An important estimate)

There exist constants c>0 and d>0 such that for all $k=i\kappa$, $\kappa>0$, the following estimate holds:

$$\int_{D\setminus\mathcal{N}} |v|^2 \, dx \le c e^{-2d\kappa} \int_{\mathcal{N}} |\mathbf{n} - \mathbf{1}| |v|^2 \, dx$$

for all solutions $v \in L^2(D)$ of $\Delta v - \kappa^2 v = 0$ in D.

Will show this when $n^* < 1$. It suffices to prove that $A_{i\kappa}: X(D) \to X(D)$ is injective for some κ since $\hat{A}_k: X(D) \to X(D)$ is Fredholm of index zero.

By contradiction: we assume $\forall \kappa > 0$ there are $(w, v) \in X(D)$ with $\|(w, v)\|_{X(D)} = 1$ and $A_{i\kappa}(w, v) = 0$.

In terms of PDEs this means $w \in H_0^2(D)$ and $v \in L^2(D)$ satisfy in D

$$\Delta w - \kappa^2 n w = (1 - n) v$$

$$\Delta v - \kappa^2 v = 0$$
(1)

Sing Changing n-1 - Proof cont,

Multiplying (1) by \overline{v} , integrating over D and using Green's second identity and the second equation in (1) yields

$$\int_{D} \kappa^{2}(n-1)w\overline{v} dx = \int_{D} (n-1)|v|^{2} dx.$$

Multiplying (1) by \overline{w} , integrating over D yields

$$\int_D \left[|\nabla w|^2 + \kappa^2 \mathbf{n} |w|^2 \right] \ dx = \int_D (\mathbf{n} - \mathbf{1}) v \overline{w} dx = \frac{1}{\kappa^2} \int_D (\mathbf{n} - \mathbf{1}) |v|^2 \ dx.$$

Since n > 0 in D we see that $\int_{D} (n-1)|v|^2 dx > 0$.

Recalling that $n^* := \sup_{N} n < 1$ from Lemma it follows

$$\begin{split} \int_D (n-1)|v|^2 \, dx &= \int_{\mathcal{N}} (n-1)|v|^2 \, dx + \int_{D \setminus \mathcal{N}} (n-1)|v|^2 \, dx \\ &= \left(1 + c e^{-2d\kappa} \|n-1\|_{L^{\infty}(D)}\right) \int_{\mathcal{N}} (n-1)|v|^2 \, dx < 0 \end{split}$$

for $\kappa > 0$ sufficiently large, which is a contradiction.

The State of the Art of TE problem

- Discreteness and existence of real TE: n-1 is one sign in $D \setminus D_0$, $\overline{D}_0 \subset D$ where $n \equiv 1$, or $n(x) 1 = c\rho(x)^\beta$ $\beta > -1$ and $\rho(x) = \inf_{y \in \partial D} |x-y|$. Cakoni-Gintides-Haddar (2010), Serov (2014)
- If $n \in L^{\infty}(D)$, ∂D and Lipschitz and $n \neq 1$ is one sign in a neighborhood of ∂D , transmission eigenvalues are discrete with ∞ as the only possible accumulation point Sylvester (2012), Kirsch (2014)
- If $n \in C^1$ near ∂D in C^2 and $n \neq 1$ on ∂D completeness of generalized eigenfunctions and Weyl's law for counting function are proven. ROBIANNO (2013), H.M. NGUYEN-J. FORNEROD (2022)
- If $n \in C^{\infty}(\overline{D})$, ∂D is C^{∞} and $n \neq 1$ on ∂D , transmission eigenvalues lie in a strip around the real axis VODEV (2018)

Open Problem: Is n-1 one sign in a neighborhood of ∂D necessary for discreteness?

Determination of Real Transmission Eigenvalues

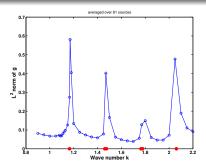
(Based on Linear Sampling Method)

Assume k is not a non-scattering number. Let $g_z^\alpha \in L^2(\mathbb{S})$ be the regularized solution of $F_k g = \Phi^\infty(\cdot, z)$

$$(\alpha I + F_k^* F_k) g_z^\alpha = F^* \Phi^\infty(\cdot, z), \qquad \Phi(\cdot, \cdot) \text{ fundamental solution of HE}.$$

For any ball $B \subset D$, $\|Hg_z^{\alpha}\|_{L^2(D)}$ is bounded for $z \in B$ as $\alpha \to 0$ if and only if k > 0 is not a transmission eigenvalue.

CAKONI-COLTON-HADDAR (2010), CAKONI-COLTON-HADDAR CHAPTER 4 CBMS (2023)



Underlying Idea of The Proof

Assume D is known n-1 one sign in D. Recall that $F=H^*TH$.

Case 1 k is not a transmission eigenvalue

Coercive and continuous of T gives $\beta \|Hg\|^2 \le |(Fg,g)| \le \|T\| \|Hg\|^2$ for some $\beta > 0$.

From factorization method $\phi_z := \Phi_\infty(\cdot,z)$ is in the range of $(F_k^*F_k)^{1/4}$ for $z \in D$. Using the eigensystem $(\lambda_j,\psi_j)_{j\geq 1}$ of the normal operator F_k , we observe that

$$g_{z}^{\alpha} = \sum_{j} \frac{\overline{\lambda_{j}}}{\alpha + |\lambda_{j}|^{2}} (\phi_{z}, \psi_{j}) \psi_{j},$$

$$\text{Therefore} \quad |(F_k \mathbf{g}_{\mathbf{z}}^{\alpha}, \mathbf{g}_{\mathbf{z}}^{\alpha})| = \left| \sum_j \frac{|\lambda_j|^2 \overline{\lambda_j}}{(\alpha + |\lambda_j|^2)^2} \left| (\phi_{\mathbf{z}}, \psi_j) \right|^2 \right| \leq \sum_j \frac{|\lambda_j|^3}{(\alpha + |\lambda_j|^2)^2} \left| (\phi_{\mathbf{z}}, \psi_j) \right|^2.$$

On the other hand by coercivity of S in $F = |F|^{1/2} S|F|^{1/2} \quad |(Fg_z^\alpha, g_z^\alpha)| \geq \beta \sum_j \frac{|\lambda_j|^3}{(\alpha + |\lambda_j|^2)^2} |(\phi_z, \psi_j)|^2$

Recall $|F|^{1/2}\psi=\sum\sqrt{|\lambda_j|}(\psi,\psi_j)\psi_j$. Since ϕ is in the range of $(F_k^*F_k)^{1/4}$, the Picard criterion gives

$$\sum_{j} \frac{1}{|\lambda_{j}|} |(\phi_{z}, \psi_{j})|^{2} < +\infty.$$

Consequently, since
$$\frac{|\lambda_j|^3}{(\alpha+|\lambda_j|^2)^2}\to\frac{1}{|\lambda_j|}\text{ as }\alpha\to0\text{ and }\frac{|\lambda_j|^3}{(\alpha+|\lambda_j|^2)^2}\le\frac{1}{|\lambda_j|},$$

we get that $\limsup_{\alpha \to 0} |(\mathit{Fg}_{\mathit{z}}^{\alpha}, \mathit{g}_{\mathit{z}}^{\alpha})| < +\infty \quad \text{ thus } \quad \|\mathit{Hg}_{\mathit{z}}^{\alpha}\|_{L^{2}(D)} < +\infty$

Underlying Idea of The Proof-cont.

Case 2 k is a transmission eigenvalue

Since F_k has dense range $Fg_z^{\alpha} \to \Phi^{\infty}(\cdot, z)$.

Assume that there is a ball $B\subset D$ such that for a.e. $z\in B$, $\|H\mathbf{g}_{z}^{\alpha}\|_{L^{2}(D)}\leq M$ as $\alpha\to 0$ (the constant M may depend on z).

Then for fixed z there exists a subsequence $v_n = Hg_z^{\alpha_n}$ that weakly converges to v_z a L-solution of the Helmholtz equation.

We know $F_k=GH$. Since G is a compact operator, we deduce that $Gv_Z=\Phi^\infty(\cdot\,,z)$. Rellich's lemma gives

$$\Delta w_z + k^2 n w_z = k^2 (1 - n) v_z \quad \text{and} \quad \Delta v_z + k^2 v_z = 0 \quad \text{in} \quad D$$

$$w_z = \Phi^\infty(\cdot\,,z) \quad \text{and} \quad \frac{\partial w_z}{\partial \nu} = \frac{\partial \Phi^\infty(\cdot\,,z)}{\partial \nu} \quad \text{on} \quad \partial D$$
 We write the equation
$$\int_{\mathbb{R}^n} \frac{1}{-1} (\Delta w_z + k^2 w_z) (\Delta \varphi + k^2 n \varphi) dx = 0 \quad \forall \varphi \in H_0^2(D)$$

Since k is a transmission eigenvalue, there exists a non $w_0 \in H^2_0(D)$ satisfying

$$(\Delta + k^2) \frac{1}{n-1} (\Delta w_0 + k^2 n w_0) = 0 \text{ in } D.$$

Taking $\varphi = w_0$ and applying Green's theorem twice yields,

$$\int_{\partial D} \left(\frac{1}{n-1} (\Delta w_0 + k^2 n w_0) \right) \frac{\partial \Phi(\cdot, z)}{\partial \nu} ds - \int_{\partial D} \frac{\partial}{\partial \nu} \left(\frac{1}{n-1} (\Delta w_0 + k^2 n w_0) \right) \Phi(\cdot, z) ds = 0,$$

(Integrals have to be understood in the sense of $H^{\pm 1/2}(\partial D)$ (resp. $H^{\pm 3/2}(\partial D)$) duality pairing.

Underlying Idea of The Proof-cont

Defining $\Psi(x) := \frac{1}{n(x)-1} (\Delta + k^2 n(x)) w_0(x)$ in D, we observe that

$$\Delta \psi + k^2 \psi = 0$$
 in D .

Classical interior elliptic regularity results and the Green's representation theorem imply that

$$\Psi(z) = \int_{\partial D} \left(\Psi(x) \, \frac{\partial \Phi(x,z)}{\partial \nu} \, - \, \frac{\partial \Psi(x)}{\partial \nu} \, \Phi(x,z) \right) \, ds_x \qquad \text{ for } z \in D.$$

Above and the unique continuation principle now show that $\Psi=0$ in D.

Therefore

$$(\Delta + k^2 n(x)) w_0(x) = 0 \text{ in } D.$$

Since $w_0 \in H_0^2(D)$ one deduces again from the unique continuation principle that $w_0 = 0$ in D, which is a contradiction.

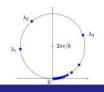
Determination of Real Transmission Eigenvalues

Assume n > 1 in D.

Lechleiter-Kirsch (2013)

Audibert-Chenel-Haddar (2018)

Cakoni-Colton-Haddar (2023)



(Based on Inside Outside Duality)

Let $(\lambda_i(k), g_i(k))$ be the eigensystem of the normal operator F_k . Denote

$$\lambda_j(k)=rac{2\pi}{ik}\left(e^{i\delta_j(k)}-1
ight)$$
 and $\sigma_1(k)$ be the largest phase.

- If k > 0 is not a transmission eigenvalue $\delta_i(k) \to 0$.
- If there is a sequence $\{k_\ell\} \to k_0 > 0$ such that $\delta_1(k_\ell) \to 2\pi$ as $\ell \to \infty$, then k_0 is a transmission eigenvalue.
- Let v be v-part of eigenfunction for k_0 . Then

$$v_\ell := rac{v_{g_z^{lpha}}(k_\ell)}{\|v_{g_z^{lpha}}(k_\ell)\|_{L^2(D)}}
ightarrow v ext{ as } \ell
ightarrow \infty$$

Application of Transmission Eigenvalues

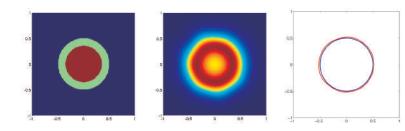
Let k_1 be the first transmission eigenvalue and suppose n(x) > 1 for $x \in \overline{D}$. Then, given k_1 and a knowledge of D, a constant n_0 can be determined such that the scattering problem for $n(x) = n_0$ also has k_1 as its first transmission eigenvalue. Then

$$\min_{\overline{D}} n(x) \leq n_0 \leq \max_{\overline{D}} n(x).$$

$$n_0 pprox rac{1}{|D|} \int_D n(x) dx$$

- Flaws or voids in D can be detected by changes in n_0 .
- Higher eigenvalues may be used for more information (see Drossos Gintides talk).

Numerical Example: Inhomogeneous Isotropic Media



n _e	n_i	k_1	<i>n</i> ₀ -exact shape	<i>n</i> ₀ -recon. shape
8	8	2.98	8.07	7.61
11	5	3.27	7.05	6.69
22	19	1.76	20.28	18.86
67	61	0.97	64.11	59.42

Non-scattering

Non-scattering Wave Numbers