The transmission Eigenvalue Problem

From now on we assume n real and let n, = inf n(x), n* = sup n(x).
xeD xeD

To fix the idea we assume n, > 1. Similar results can be obtain for
0<n, <n*<1.

Dividing by n — 1 in formulation 1 and applying (A + k2) on both sides
we obtain: Find w € H2(D) satisfying fourth order equation

1
(A + kQ)H(A + k2nw =0

or in the variational form

1
/ — 1(Aw—|—k2nw)(Acp—|—k2g0) dx=0  forall ¢ € H3(D)
D



Transmission Eigenvalues (k)

Expand the above and define the bounded linear selfadjoint operators
based on Riesz Representation Theorem

1
(Tw, ¥)p :/ ——Aw Apdx coercive (TW,@)HZ(D) >
D

- 2
n—1 n*_]-HW”H2

1
(le,go)szf/ —— (Awp + w AD) dX*/VW~V¢dX
pn—1 D

n

(Taw, ‘P)HZ(D) = / wpdx non-negative.

pn— 1
Letting k? := 7 we obtain the quadratic pencil eigenvalue problem
Tw — 1Tiw + 72 Tow =0, w € H3(D) or
w — 7Kiw + T2Kow =0, w € H3(D)

with selfadjoint compact operators

Ki=T V2T T-Y2 and Ky =T V27,712



Transmission Eigenvalues

The transmission eigenvalue problem can be transformed to the
eigenvalue problem

1
(K—&nu=0, U= ( TK21W/2W ) =2

for the non-selfadjoint compact operator

K: H3(D) x H2(D) — HZ(D) x H2(D) given by

. Ki o =K
2

However from here one can see that the transmission eigenvalues form a
discrete set with +00 as the only possible accumulation point.



Transmission Eigenvalues

To obtain existence of transmission eigenvalues, Faber-Krahn type
inequalities, and monotonicity properties for real eigenvalues 7 > 0, we
rewrite the transmission eigenvalue problem in the form

(A, —7B)w =0 in H3(D)

1
(Arw, ) epy = /

Dn—l

(Aw + 7w)(Ap + T9) dx—|—72/ w - dx
D

(BwW, ©)12(p) = /DVW -V dx
Observe that

m The mapping 7 — A, is continuous from (0, +00) to the set of
self-adjoint coercive operators from H3(D) — HZ(D).

m B: H3(D) — H3(D) is self-adjoint, compact and non-negative.



Coercivity of A,

LEt’Y:ﬁ

A%

2 2 2
(Arw, W)y ) Ylaw + rwli?y + 72wl

A%

2 2 2
ylawllz = 2y7llAw] 2 llwll 2 + (v + )77 [[wll}2

2
Y 2 a2l 2
= e (rhwle = iawly ) + (7 - 7) 18wz

212
+ G4y —orlwll2

\%

2
a2 2 2 2
('y - 7) 18wz p) + (4 = ) lIwli?,

for some v < € < 7 + 1. Furthermore, since Vw € H&(D)z, using the Poincaré inequality we have that

2 2
IVwilizpy < IAawll2py-

A1(D)

Hence we can conclude (A, w, W)H2(D) > Cr vl for some constant C; > 0

2
H2(D)

As for B: The compact embedding of H2(D) into H'(D) and the fact that Vw € H&(D) imply that

B: Hg(D) — HS(D) is compact since HBW”HZ(D) < C“W“Hl(D)‘



Transmission Eigenvalues

Now we consider the generalized eigenvalue problem

(A, = X(T)B)u=0 in H(D)

Note that k? = 7 is a transmission eigenvalue if and only if satisfies
ANr)=T1

For a fixed 7 > 0 there exists an increasing sequence of eigenvalues
Aj(7)j>1 such that \j(7) = 400 as j — oo.

These eigenvalues satisfy

N (Aru,u)
A7) = V{/nclrb]tj (uerpva\)go} (Bu,u) /-

U denotes the set of all j-dimensional subspaces W of Hg(D) such that W U Kern(B) = {0}



Transmission Eigenvalues

Hence, if there exists two positive constants 79 > 0 and 77 > 0 such that
both Assumptions holds

A,, — 0B is positive on H3(D)

A,, — 1B is non positive on a k dimensional subspace of H3(D)

then each of the equations A\j(7) =7 for j =1,..., k, has at least one
solution in [7g, 71] meaning that there exists k transmission eigenvalues
(counting multiplicity) within the interval [rg, 71].

See e.g. Section 4.1 in

& F. CakonI, D. CoLToN AND H. HADDAR (2023), Inverse Scattering Theory and Transmission Eigenvalues,
CBMS-NSF, SIAM Publication, 2nd Edition.

It is now obvious that determining such constants 7o and 7 provides the
existence of transmission eigenvalues as well as the desired bounds on the
eigenvalues.



Transmission Eigenvalues

Obviously we have

(Ar —B)w, w) := / ﬁ (Aw + 7nw)[* dx + T/ (IVw[* — 7n|w[?) dx.
A D

Poincare inequality yields the Faber-Krahn type inequality for the first
real transmission eigenvalue (not isoperimetric)

A1(D)

suppn’

where A1(D) is the first Dirichlet eigenvalue of —A in D.

In particular all 75 € (0, A1(D)/supp n) satisfies Assumption 1.

Concerning Assumption 2



Transmission Eigenvalues

Take 7 be the square of the first real eigenvalue of a ball B, C D of
radius r and constant refractive index n,.

Let u, be the corresponding eigenfunction and denote i, € H3(D) its
extension by zero to the whole of D. Then

(A, i, — 7By, G,) < 0.

If ris such that m(r) disjoint balls can be included in D, the above
condition is satisfied in a m(r)-dimensional subspace of HZ(D)

A
There exists m(r) transmission eigenvalues (counting multiplicity). As
r — 0, m(r) — oo and since the multiplicity of an eigenvalue is finite we
prove the existence of an infinite set of real transmission eigenvalues




Monotonicity Properties

n* :=suppnand n, :=infpn, 7:= k2
Theorem (Cakoni-Gintides-Haddar (2010))

If n € L>°(D) and n, > 1, then there exists a sequence of real
eigenvalues k;j(n, D) accumulating to +oco. Futhermore, and they satisfy
monotonicity properties:

ki(n®, Bi) < kj(n", D) < kj(n(x), D) < kj(n., D) < kj(n., B)

where B, C D C B; are balls.

Proof: Existence is proven. For simplicity we show the proof of monotonicity for ki

1 2 2, 12
Ai(7T, D, n(x)) = min max —— [Aw + Tw| dx + T7||w
Dnb) = iy max [ | w2

IVwll2 =1

V u € H3(D) such that Vullj2(p) = 1 we have

1
18w+ rwlf oy + Wil < [ law s rw a7l
n* —1 (D) (D) D n(x) —1 (D)

<

2 2 2
g AW iz + 7wl )



Proof Cont.

Therefore we have that for an arbitrary 7 > 0

A1(7, B2, n™) < Mi(7, D, n™) < Ai(7, D, n(x))
< A1(7, Dy ny) < Ai(7, By, ny).

m For 1 := klz(n*, Bj), By C D, from the proof of existence we have that
A1(71, D, n(x)) — 11 <0
= On the other hand, for 7 := kf(n"7 B), D C Bs, we have
A1(70, B2, n") — 70 =0
and hence

A1(70, D, n(x)) — 710 > 0

m Therefore the first eigenvalue ki (D, n(x)) is between ki (n™, By) and kq(n«, By).



Inequalities

If 1 < a < n(x) < ny(x) for almost all x € D, then
ki(n2(x), D) < kj(m(x), D)

If 0 < a < ni(x) < m(x) < B <1 foralmost all x € D, then

ki(m(x), D) < kj(na(x), D).

Exercise: Modify the above argument to prove part 1.

Theorem (Theorem 4.18, Cakoni-Colton-Haddar CBMS (2023))

For known D, the constant n is uniquely determined from the
corresponding smallest transmission eigenvalue ki(n, D) > 0 provided
that it is known a priori that either n >10or 0 < n < 1.




Sing Changing n — 1

Let NV be a neighborhood of D form inside D, and let
* = sup n(x)

= inf d
Ny XlgNn(x) an n sup

Assume that n € L°°(D) with n(x) > ng > 0 for almost all x € D and
either n* < 1 or n, > 1 for some neighborhood N of the boundary dD.
Then the set of transmission eigenvalues is at most discrete with +oc0 as
the only accumulation point.

SYLVESTER, STAM J. MATH. ANAL., 44 (2012), KirscH, MATH. AcaD. Scl. PARIs, 354 (2016).

Sketch of the Proof: We work on the space (w, v) € X(D) = Hg(D) x L2(D). Find (w, v) € X(D) suwch that
for all (¢, ¢) € X(D)

/ (A@-{- kza)v dx + / (Aw + k2nw)¢+ (n — 1)vg dx
D D
Denote
Ap(w, v, @) = / (A + kz'd;)v dx + / (Aw + k2nw)<p + (n— 1)vepdx
D D
Ap(w, v, ) = / (&Y + kQE)v dx + / (Aw + k2w)¢+ (n— 1)vp dx
D D
and the corresponding operators by means of Riesz representation theorem

Al Vi, ) = (A, ), (8 Do)y Akl vi s 0) = (Arlw, ), (8, 9))



Sing Changing n — 1 - Proof cont,

Thus we need to study the kernel Ax(w,v) = 0.

 S—

Step 1: For any two ki, ko € C, Ay, — Akz and Ay, — Ay, are compact.

Note (Akl - flk2> (wj, vji 9, 0) = (klz—k%)/ Py dx+/ (kin— k3) w;p dx.
D D
Step 2: There exists a ko > 0 and a constant ¢ > 0 s. th. for all Kk > kg

‘-’Ztili(wv v, ,(/}7 L)0)‘
sup

—ZC Wy v for all w, Vv c X(D).
(¥,9)#0 H(1/1,<P)||X(D) it )HX(D) ( ) (D)

In particular the operator A,-,i is invertible, Ay is Fredholm of index zero. |

(Analytic Fredholm Theory)

Step 3: For some x > 0, the operator A;,; : X(D) — X(D) is invertible
with bounded inverse. Thus the kernel of A, is non-zero for at most a
discrete set of k € C with 400 as possible accumulation point.

.




Sing Changing n — 1 - Proof cont,

Lemma (An important estimate)

There exist constants ¢ > 0 and d > 0 such that for all k = ik, k > 0,
the following estimate holds:

/ |v|2dX§ce_2d"‘/ |n — 1]|v|? dx
D\N N

for all solutions v € L2(D) of Av — k?v =0in D.

Will show this when n* < 1. It suffices to prove that
Aii : X(D) — X(D) is injective for some « since A, : X(D) — X (D) is
Fredholm of index zero.

By contradiction: we assume V k > 0 there are (w, v) € X(D) with
[(w, v)lIx(py = 1 and Aj(w,v) = 0.
In terms of PDEs this means w € H3(D) and v € L?(D) satisfy in D
Aw — k2nw = (1 — n)v (1)
Av—r*v =0



Sing Changing n — 1 - Proof cont,

Multiplying (1) by Vv, integrating over D and using Green's second
identity and the second equation in (1) yields

/ K*(n—1)wvdx = / (n —1)|v|? dx.
D D
Multiplying (1) by w, integrating over D vyields
1
/ [|VW|2 + /<c2n|w|2] dx = / (n—1)vwdx = — / (n —1)|v|? dx.
D D K= JbD

Since n > 0 in D we see that [,(n— 1)|v[? dx > 0.

Recalling that n* := sup,-n < 1 from Lemma it follows

/D(n—l)\v|2dx /N(n—l)|v|2dx—|—/D\N(n—1)v|2dx

(14 ce ™ |n = 1]|1=(p)) /N(n —1)|vPPdx <0

for k > 0 sufficiently large, which is a contradiction.



The State of the Art of TE problem

] Biscreteness and existence of real TE: n — 1 is one sign in D\ Dy,
Do C D where n=1, or n(x) — 1= cp(x)? 8> —1 and
p(X) = infyeaD ‘X - y| CAKONI-GINTIDES-HADDAR (2010), SEROV (2014)

m If n€ L*°(D), D and Lipschitz and n # 1 is one sign in a
neighborhood of 0D, transmission eigenvalues are discrete with oo
as the only possible accumulation point svivester (2012), Kmrson (2014)

m If n€ C! near D in C? and n # 1 on OD completeness of
generalized eigenfunctions and Weyl's law for counting function are

proven. Rosianno (2013), H.M. NGUYEN-J. FORNEROD (2022)

m If ne C®(D), D is C* and n # 1 on 9D, transmission
eigenvalues lie in a strip around the real axis vooev (2018)

A
Open Problem: Is n — 1 one sign in a neighborhood of 9D necessary for J

discreteness?

AMBROSE-CAKONI-MOskow, RMS (2022), KIAN-UHLMANN (2023) ARX1v:2302.03457



Determination of Real Transmission Eigenvalues

(Based on Linear Sampling Method)

Assume k is not a non-scattering number. Let g& € L2(S) be the
regularized solution of Frg = ®°°(-, 2)

(al + FFr)gs = Fro°(-, 2), (-, ) fundamental solution of HE.

For any ball B C D, ||Hgg'||i2(p) is bounded for z € B as a — 0 if and
only if k > 0 is not a transmission eigenvalue.

CAKONI-COLTON-HADDAR (2010), CAKONI-COLTON-HADDAR CHAPTER 4 CBMS (2023)

averaged over 81 sources.




Underlying Idea of The Proof

Assume D is known n — 1 one sign in D. Recall that F = H* TH.
Case 1 k is not a transmission eigenvalue

Coercive and continuous of T gives B||Hg||> < |(Fg,g)| < || T|l|IHg||? for some 8 > 0.

From factorization method ¢, := ®oo (-, 2) is in the range of (Fj Fk)l/4

(Aj, ¢j)j21 of the normal operator Fy, we observe that

for z € D. Using the eigensystem

- X
g8 = Z W(lﬁz, »i);,

1% 1P% 2 1212 2
Therefore  |(Fygs',8:")| = ———= (92, ¥))|"| < —— (%2, ¥;)I"-
s z,-:(aJrIAjIZ)2 Xj:(aﬂkﬂz)?
1/2 1/2 213
On the other hand by coercivity of S in F = |F|Y/2S|F|Y/2  |(Fg®, )| > B Z ﬁ
I

Recall [F|1/24 = 52\ /INj|(w, 9;)4;. Since ¢ is in the range of (F}* Fi)!/*, the Picard criterion gives

Z m\(qaz, )P < +oo.

. 1212 1 P 1
Consequently, since ——  — asa—>0and — < —,
(a + [Xj]2)? [Aj] (e +|Aj[2)? [Aj]

we get that lim sup\(nga,gza)\ < 400 thus Hnga“LQ(D) < +oo
a—0

(2, )2



Underlying Idea of The Proof-cont.

Case 2k is a transmission eigenvalue

Since Fj has dense range Fgf* — ®°°(-, z).

Assume that there is a ball B C D such that for a.e. z € B, ||Hgy* “LZ(D) < M as a — 0 (the constant M may
depend on z).

Then for fixed z there exists a subsequence v, = Hgs*" that weakly converges to v; a L-solution of the Helmholtz
equation.

We know F, = GH. Since G is a compact operator, we deduce that Gv, = ®°°(-, z). Rellich's lemma gives
Aw; + anWZ = kz(l — n)vy and Avy + kzvz =0 in D

ow;  99%°(-,2)
ov ov

wy = 0°(-, 2) and on 9D

We write the equation / (Aw, + KPw;)(Ap + KPng)dx =0 Ve € H3(D)

Dn—1

Since k is a transmission eigenvalue, there exists a non wy € Hg(D) satisfying

(A +K?) (Awp + K2nwg) = 0in D.

n—1

Taking ¢ = wp and applying Green'’s theorem twice yields,

1 ) 9(- , 2) ! 1 )
/ ( (Awp + k nt)) ——— ds — / — ( (Awp + k nwo)) ®(-,z)ds =0,
oD \n—1 v 8D Ov \n—1

(Integrals have to be understood in the sense of qul/z(aD) (resp. H¥3/2(6D)) duality pairing.



Underlying Idea of The Proof-cont

Defining W(x) := ﬁ(A + k%n(x))wo(x) in D, we observe that

Ay + k*p =0 inD.

Classical interior elliptic regularity results and the Green's representation theorem imply that

V(z) = /<l9D (W(x) % — agiflx)‘b(x,z)) dsy forz € D.

Above and the unique continuation principle now show that W = 0 in D.

Therefore
(A + k2n(x))w0(x) =0 in D.

Since wy € Hg(D) one deduces again from the unique continuation principle that wy = 0 in D, which is a

contradiction.



Determination of Real Transmission Eigenvalues

Assume n > 1in D. S

LECHLEITER-KIRsCH (2013)
AUDIBERT-CHENEL-HADDAR (2018)

.
CAKONI-COLTON-HADDAR (2023) e 1=

(Based on Inside Outside Duality)

Let (Aj(k), gj(k) be the eigensystem of the normal operator Fy. Denote

Aj(k) = 27 (/%) — 1) and o4 (k) be the largest phase.

m If kK> 0 is not a transmission eigenvalue d;(k) — 0.

m If there is a sequence {k;} — ko > 0 such that d1(kg) — 27 as
{ — o0, then kg is a transmission eigenvalue.

m Let v be v-part of eigenfunction for kg. Then

o (K
7 ::ngi(e)%vasﬁ—)oo
||Vg;*(ké)||L2(D)




Application of Transmission Eigenvalues

Let k; be the first transmission eigenvalue and suppose n(x) > 1 for

x € D. Then, given k; and a knowledge of D, a constant ng can be
determined such that the scattering problem for n(x) = ng also has k; as
its first transmission eigenvalue. Then

min n(x) < ng < max n(x).
D D

5,
ng ~ — n(x)dx
°% o] J, ")

m Flaws or voids in D can be detected by changes in ng.

m Higher eigenvalues may be used for more information (see Drossos
Gintides talk).



Numerical Example: Inhomogeneous Isotropic Media

Ne n; ki np-exact shape ng-recon. shape
8 8 298 8.07 7.61

11 5 3.27 7.05 6.69

22 19 1.76 20.28 18.86

67 61 0.97 64.11 50.42




Non-scattering Wave Numbers }
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