
TE and Non-Scattering

k > 0 is a transmission eigenvalue

if there are nonzero v and u ∈ H2
0 (D) such that

∆w + k2nw = k2(1− n)v in D

w = 0 and
∂w

∂ν
= 0 on ∂D

and ∆v + k2v = 0 in D

k > 0 is a non-scattering wave number

if there a solution w ∈ H2
0 (D) of this problem

∆w + k2nw = k2(1− n)vg in D

w = 0 and
∂w

∂ν
= 0 on ∂D with

vg (x) =

∫
S
e ikx·ŷg(ŷ) dsŷ (∆vg + k2vg = 0 in R3)



Non-scattering Configuration

k is a non-scattering wave number, if there exists a solution to

∆w + k2nw = k2(1− n)v in D

w = 0 and ν · ∇w = 0 on ∂D

with v satisfying ∆v + k2v = 0 in Ω

Note that v real analytic in a region Ω ⊃ D.

If k > 0 is a transmission eigenvalue, can the
part v of the eigenfunction be extended as solu-
tion to the Helmholtz equation outside D?

In other words is the part v of the eigenfunction
sufficiently regular up to the boundary of D?



Non-Existence of Non-scattering Wave Numbers

If D contains a boundary point x0 ∈ ∂D that is a corner in R2, or a
vertex, conical corner, edge point in R3, and n(x0) ̸= 1 and n ∈ C 1,α

locally in Bϵ(x0), then every incident wave is scattered by D, n.

Letting Cϵ := Bϵ ∪ D. There are no non-trial u
and v such that

∆u + k2nu = 0 in Cϵ

∆v + k2v = 0 in Bϵ

u − v = 0 on ∂D ∩ Bϵ

∂u

∂ν
− ∂v

∂ν
= 0 on ∂D ∩ Bϵ

No assumption on the incident field v is needed!
This result was first proven by Bl̊asten-Päivärinta-Sylvester (2013)

Hu-Salo-Vesalainen (2016), Elschner-Hu (2017), (2018)

Bl̊asten (2018), Cakoni-Xiao (2019), Bl̊asten-Liu (2020)



Two Techniques for Corner Scattering

Based on CGO (rapidly decaying) solutions of the Helmholtz
equation.

Bl̊asten-Päivärinta-Sylvester (2013), Päivärinta-Sylvester-Vesalainen (2017), Bl̊asten

(2018), Cakoni-Xiao (2019), Xiao (2021)

CGO solution is used as test function w in∫
Cϵ

(1− n)vφ dx =

∫
Kϵ

φ
∂u

∂ν
− u

∂φ

∂ν
ds

to control the boundary terms, where u and v are transmission
eigenfunctions.

Based on singularity analysis of the transmission
eigenfunctions in a neighborhood of the
boundary singularity.

Elschner-Hu (2017), (2018)

In both methods a contradiction is achieved if v is assumed to solve the

Helmholtz equation in Bϵ(x0).



Uniqueness of Polyhedron with One Measurement

This negative result implies that scattering data due to one single incident
plane wave uniquely determines the support of convex polyhedron
inhomogeneities. Assumption is that n ∈ C 1,α near ∂D and n ̸= 1 on ∂D.
Hu-Salo-Vesalainen (2016), Elschner-Hu (2018), Bl̊asten (2018), Cakoni-Xiao (2019), Bl̊asten-Liu

(2021)

Proof in R2: Assume there are convex polyhe-
dron D1 and D2 that such that u∞1 = u∞2 due
to one incident plane wave ui = e ikx·ŷ (or point
source or any single experiment). By Rellich’s
Lemma the total field u1 = u2 up to the bound-
ary of R2 \ (D1 ∪D2). Let x0 be the vertex of a
corner of D1 outside D2. Then in a sufficiently
small ball we have that the set of equations holds
with u := u1 and v := v2 and D := D1, which
is a contradiction.



Singularities Scatter

For general domains D this question is only recently studied.
Partial results: Bl̊asten-Liu (2021), Vogelius-Xiao (2021)

Major progress using free boundary methods in:

F. Cakoni and . Vogelius (2021), Singularities almost always scatter: Regularity results for

non-scattering inhomogeneities, Communications in Pure and Applied Math (to appear).

M. Salo and H. Shahgholian (2021), Free boundary methods and non-scattering phenomena, Research

in the Mathematical Sciences.



Almost All Singularities Scatter

Let ∂D be Lipschitz, n ∈ L∞(D). The nontrivial incident field v is
scattered if there is z ∈ ∂D such that the following cannot hold

∆w+k2nw = k2(1− n)ℜ(v) in D∩Br (z)

w =
∂w

∂ν
= 0 on ∂D ∩ Br (z)

Theorem (Cakoni-Vogelius 2021)

Incident field v scatterers if ∃z ∈ ∂D where (n(z)− 1)v(z) ̸= 0 and

n in C ℓ,µ(D ∩ Br (z)), ℓ ≥ 1, and ∂D ∪ Bρ(z) is not in C ℓ+1,µ ∀ ρ.

n in C∞ in D ∩ Br (z) and ∂D ∩ Bρ(z) is not C
∞ ∀ ρ.

n is real analytic at z and ∂D ∩ Bρ(z) is not analytic ∀ ρ.

Incident field v is real analytic as solution of ∆v + k2v = 0 in Ω ⊃ D, but only regularity of v up to ∂D matters.



The Idea of the Proof

Higher regularity straightforward application of the celebrated paper
by Kinderlehrer and Niremberg (1977) provided ∂D is C 1, w is C 2 near z .

To obtain this regularity from Lipschitz, we appeal to free boundary
methods due to Caffarelli (1977) which apply to problems

∆w = f χ{w ̸=0} in Br (z)

z ∈ ∂ {w = |∇w | = 0}

f is Lipshitz up to the boundary and w > 0.

For us f := −k2w + k2(1− n)ℜ(v)

Most of the work is to prove

w ∈ C 1,1 up to the boundary. Default regularity of w is C 1,α α < 1.
We use that w is zero outside D to improve it.

We then use f ∈ C 1,1(D ∩ Br (z)) and the non-degeneracy condition
[(1− n)ℜ(v)] (z) ̸= 0 to prove one sign condition on w



Remarks

We need the non-vanishing condition v(z) ̸= 0 on incident waves at
the boundary singularity.

If k2 is not a Dirichlet eigenvalue of −∆ in D there are many
Herglotz wave function that do not vanish on the boundary.

Question: Can a k > 0 be transmission eigenvalue for n,D and k2 a
Dirichlet eigenvalue of −∆ in D?

Salo-Shangholian (2021) remove Lipschitz starting regularity. One can
start merely with a solid region (intD = D), but allowing for the
possibility that D has inward cusps (is thin at boundary points).

This result provides lack of sufficient regularity of v part of the
eigenfunction near a boundary singularity or otherwise vanishing.

Our result establishes necessary condition for an inhomogeneity to
be non-scattering. For general smooth inhomogeneity (other than
balls) the existence of non-scattering wave numbers is still open.



Connection to Schiffer’s Property

Always Scatterers: Given v satisfying ∆v + k2v = 0 in Rd , the problem

∆u + k2nu = k2(1− n)v in D

u = 0,
∂u

∂ν
= 0 on ∂D

has no solution for any k > 0.

D has Schiffer’s property if the problem

∆w + λw = −1 in D w = 0,
∂w

∂ν
= 0 on ∂D

has no solution for any λ.
Conjecture: The only simply connected domain in Rd that fails to have
Schiffer’s property are balls.

Integral geometric formulation of Schiffer’s property is Pompeiu property.



Transmission Eigenvalue Problem

A Glimpse on Anisotropic Media



Scattering by an Inhomogeneous Media

∂D is Lipschitz, k = ω/cb, ρb = 1

n ∈ L∞(Rd) real valued positive

A ∈ L∞(Rd) symmetric positive definite matrix

Supp(A− I ) ∪ Supp(n − 1) is bounded

The incident field v satisfies the Helmholtz equation

∆v + k2v = 0 in Rd

The total field u = w + v satisfies

∇ · A∇u + k2nu = 0 in Rd

The scattered field w is outgoing, i.e. it satisfies the Sommerfeld
radiation condition



Scattering by an Inhomogeneous Media

The scattered field w satisfies

∇ · A∇w + k2nw = ∇ · (I − A)∇v + k2(1− n)vg in Rd

vg (x) =

∫
S
e ikx·ŷg(ŷ) dsŷ (∆vg + k2vg = 0 in Rd)

w satisfies the (outgoing) Sommerfeld radiation condition.

O = Supp(A− I ) ∪ Supp(n − 1)

Let G be the unbounded component of O
c

We call D := G
c
, and D ⊂ Ω

Now assume that the incident field v does not scatter, this is

w ≡ 0 in Rd \ D



Non-scattering wave number

Given the inhomogeneous media (A, n,D), we say k is a non-scattering
wave number, if this problem has a solution

(∗) ∇ · A∇w + k2nw = ∇ · (I − A)∇vg + k2(1− n)vg in Rd

w = 0 in Rd \ D and

vg (x) =

∫
S
e ikx·ŷg(ŷ) dsŷ (∆vg + k2vg = 0 in Rd)

Or (∗) satisfied in D together with conditions (overdetermined)

w = 0 and ν · A∇w = ν · (I − A)∇vg on ∂D



Transmission Eigenvalues

Given the inhomogeneous media (A, n,D), we say k is a transmission
eigenvalue, if there is nontrivial w and v satisfying

∆v + k2v = 0 in D

∇ · A∇w + k2nw = ∇ · (I − A)∇v + k2(1− n)v in D

w = 0 and ν · A∇w = ν · (I − A)∇v on ∂D

u := w + v

∆v + k2v = 0 and ∇ · A∇u + k2nu = 0 in D

u = v and ν · A∇u = ν · ∇v on ∂D



State of the Art of TEP - General Media

Discreteness, completeness of eigenfunction, Weyl’s asymptotic:

∂D ∈ C 2, A, n ∈ C 1(D) and for x ∈ ∂D and every unite ξ ⊥ ν

(A(x)ν · ν)(A(x)ξ · ξ)− (A(x)ν · ξ)2 ̸= 1 and (A(x)ν · ν)n(x) ̸= 1

the first condition is equivalent to the Agmon, Douglis and Nirenberg complementing condition

H.M. Nguyen-QH Nguyen (2021), H.M. Nguyen-J. Fornerod (2022)

Existence of real TE: ∂D, Lipschitz, and A and n in L∞(D). There
exists an infinite sequence of real TE {kj > 0} accumulating at ∞,
if A− I and n − 1 are one sign (same or opposite) uniformly in D.
Cakoni-Kirsch (2010)

Location of TE: For ∂D in C∞, A = aI , a, n ∈ C∞(D) and the
above contrast condition on ∂D, unfortunately the TEs do not have
uniformly bounded imaginary part. Vodev (2015),(2018).



Case 2: A ̸= I

k is a non-scattering wave number, if there exists a nontrivial v such that

∆v + k2v = 0 in Ω

∇ · A∇w + k2nw = ∇ · (I − A)∇v + k2(1− n)v in D

w = 0 and ν · A∇w = ν · (I − A)∇v on ∂D

(Cakoni-Vogelius-Xiao, 2023)

We prove the same type of regularity result for an anisotropic
inhomogeneity to be non-scattering, provided

∂D is C 1,µ and ν · (A− I )∇v(z) ̸= 0

F. Cakoni, M. Vogelius and J. Xiao (2023), Notes on the regularity of non-Scattering anisotropic

Inhomogeneities, Arch. Rat. Mech. Anal.



Non-scattering Inhomogeneities with Corners

The case of curvilinear polygonal in R2 with A = aI is analyzed by CGO
solutions. There are inconclusive exceptional angles.

F. Cakoni and J. Xiao (2021) On corner scattering for operators of divergence form and applications to

inverse scattering, Anal. & PDEs.

Example of a corner that does not scatter

Take a = n ̸= 1 positive constants in D.

Observation: k is a transmission eigenvalue if and only if k2 is either
Dirichlet or Neumann eigenvalue for −∆ in D.

Now consider in particular D := (0, 1)× (0, 1). The n Dirichlet eigenpair

(p2 + q2)π2, ψ(x , y) := sin(pπx) sin(qπy), p, q ∈ N

yield the corresponding transmission eigenfunction (u, v) := (ψ, aψ).
Note ψ and ∇ψ vanishes at the corner.



Anisotropic Media

(A, n,D) be the push-forward of (I , 1,D) under sufficiently smooth
diffeomorphism Φ : D → D, with Φ = I on ∂D

A =
DΦDΦ⊤

| detDΦ|
◦ Φ−1 and n =

1

| detDΦ|
◦ Φ−1 .

Any k is a non-scattering wave number for any incident field.
Transmission eigenvalues for this (A, n,D) are not discrete.

A, n and D violate the sufficient conditions of discreteness of
transmission eigenvalues.

To understand why this construction does not contradict our
non-scattering result, one must understand that if ∂D is not of class
C ℓ+1,µ near z , then either Range(A− I )(z) ⊥ ν(z) or A, n fails to
be C ℓ+1,µ,C ℓ,µ near z .
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