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Outline of the Course

(A) Introduction and Examples
® Heat equation
a CT and Radon transform
® |mpedance tomography
® |nverse scattering problem
(B) lll-Posedness and Regularization
® Tikhonov Regularization
® [terative regularization techniques
& Remarks
(C) Inverse Scattering theory
® Uniqueness
® [terative methods
@ Factorization method
I am following my monograph An Introduction to the Mathematical Theory of
Inverse Problems, 3rd edition, 2020.
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SKIT

(A) Introduction and Examples

We begin with important and classical examples:
Example A (Backwards heat equation) One-dimensional heat equation

ou(x,t)  02u(x,1)
o ox2

with boundary and initial conditions

(X7 t) € (077) X R>07

u(0,t) =u(m,t)=0,t>0, u(x,0)=u(x), 0<x<m.
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SKIT

(A) Introduction and Examples
We begin with important and classical examples:
Example A (Backwards heat equation) One-dimensional heat equation

ou(x,t)  02u(x,1)
o ox2

(X7 t) € (077) X R>07
with boundary and initial conditions
u(0,t) =u(m,t)=0,t>0, u(x,0)=u(x), 0<x<m.

Separation of variables leads to the (formal) solution

™

u(x, t) = Z an e_”ztsin(nx) with a, = p / Uo(y) sin(ny)dy .
n=1 0
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Direct problem: Given up and T > 0, determine u(-, T).
Inverse problem: Measure u(-, T) and determine u(-, 7) for given 7 < T.
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Direct problem: Given up and T > 0, determine u(-, T).
Inverse problem: Measure u(-, T) and determine u(-, 7) for given 7 < T.

Recall:

™
oo

2 2
u(x,T) = - E /u(y,T)sin(ny)dye*”(T*T) sin(nx)..
n=17

Therefore, determine v := u(-, 7) from integral equation

s

ulx, T) = /k(x,y)v(y)dy, 0<x<m,

where
2 & )
k == e " i i :
(x,y) - e sin(nx) sin(ny)

n=1
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Direct problem: Given up and T > 0, determine u(-, T).
Inverse problem: Measure u(-, T) and determine u(-, 7) for given 7 < T.
Recall:

™
oo

2 2
u(x,T) = - E /u(y,T)sin(ny)dye*”(T*T) sin(nx)..
n=17

Therefore, determine v := u(-, 7) from integral equation

s

ulx, T) = /k(x,y)v(y)dy, 0<x<m,

where
2 2
k(x,y) = ;Ze’” (7=7) sin(nx) sin(ny) .
n=1

Inverse problem leads to solving a Fredholm integral equation of the first kind!
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Example B (Computer tomography)
Consider a fixed plane through a human body. p(x1, x2) is change of density at
(x4, x2) and has to be determined from measurements of (attenuations of)
intensities / = /(L) of X-rays along lines L in the plane.

X2 L
A

%

Y

X4
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Example B (Computer tomography)
Consider a fixed plane through a human body. p(x1, x2) is change of density at
(x4, x2) and has to be determined from measurements of (attenuations of)
intensities / = /(L) of X-rays along lines L in the plane.

X2 L
A

S

%

\

Parametrization of L = L s:
6 —sind
) = s( 0 e[ TP") er?, teRr.
Xo sind cosd
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The attenuation of the intensity / is approximately described by dl = —v p / dt
with some constant . Integration along the ray yields

Inlss = —7/p(scosé—tsiné,ssin6+tcos<5)dt.

— 00
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The attenuation of the intensity / is approximately described by dl = —v p / dt
with some constant . Integration along the ray yields

o0

Inlss = —7/p(scosé—tsiné,ssin6+tcos<5)dt.

— 00

Direct problem: Given p (with compact support), compute line integrals.
Inverse problem: Determine p(xi, X) from Radon transform

oo

(Rp)(s,6) = /p(scosa—tsin&,ssin5+rcosa)dt7 (5,6) € R x [0, 7).

— o0
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The attenuation of the intensity / is approximately described by dl = —v p / dt
with some constant . Integration along the ray yields

o0

Inlss = —7/p(scosé—tsiné,ssin5+tcos<5)dt.

— 00

Direct problem: Given p (with compact support), compute line integrals.
Inverse problem: Determine p(xi, X) from Radon transform

oo

(Rp)(s,6) = /p(scos§—tsiné,ssiné—ktcosé)dﬁ (5,6) € R x [0, 7).

— o0

Special case: p = p(r) radially symmetric, only vertical rays. This leads to Abel’s
integral equation for z — p(v/'R? — 2):

y

\/R2 _
V(VR? —y) = —v/'o(f\izz)dz, 0<y<R.
0
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Example C (Impedance tomography)

Let D C IR? cross-section through body and v = v(xi, X2) conductivity. Apply
current distribution f on boundary 0D. The potential u satisfies

div(yVu) =0in D, ~9du/dv =fondD.

Direct problem: Given ~ and f, solve boundary value problem for u!
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Example C (Impedance tomography)

Let D C IR? cross-section through body and v = v(xi, X2) conductivity. Apply
current distribution f on boundary 0D. The potential u satisfies

div(yVu) =0in D, ~9du/dv =fondD.

Direct problem: Given ~ and f, solve boundary value problem for u!
If D is bounded Lipschitz domain and v € L*°(D) with v(x) > v, for x € D this
is elliptic boundary value problem with boundary conditions of Neumann type!
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Example C (Impedance tomography)

Let D C IR? cross-section through body and v = v(xi, X2) conductivity. Apply
current distribution f on boundary 0D. The potential u satisfies

div(yVu) =0in D, ~9du/dv =fondD.

Direct problem: Given ~ and f, solve boundary value problem for u!
If D is bounded Lipschitz domain and v € L*°(D) with v(x) > v, for x € D this
is elliptic boundary value problem with boundary conditions of Neumann type!

Inverse problem: Measure u on 9D for many fluxes f and determine ~y in D.
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Example D (Inverse scattering problem)

n=A1
US/V
Uinc
_
us\p.

Direct scattering problem: Given n € L>°(R®) such D := supp(n— 1) is
bounded, the wave number k > 0, and the incident field 4™ (x) = e*9*with

0 e S2 (unit sphere), find the total field u = u(x) with Au+ k2nu = 0 in R3 such
that us := u — u™ satisfies a radiation condition for |x| — oo.
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Example D (Inverse scattering problem)

n=A1
US/V
Uinc
_
us\p.

Direct scattering problem: Given n € L>°(R®) such D := supp(n— 1) is
bounded, the wave number k > 0, and the incident field u™(x) = e’ *with

0 e S2 (unit sphere), find the total field u = u(x) with Au+ k2nu = 0 in R3 such
that us := u — u™ satisfies a radiation condition for |x| — oo.

Inverse scattering problem: Given u far away from D for all directions 0 e s2
find n or at least the shape of D = supp(n —1).
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(B) lll-Posedness and Regularization A\‘(IT

Karlsruhe Institute of Technology

Common properties of examples:
Direct problems are well-posed (in suitable function spaces and solution

concepts); that is, existence, uniqueness, and continuous dependence on data
holds.
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SKIT

(B) lll-Posedness and Regularization

Common properties of examples:

Direct problems are well-posed (in suitable function spaces and solution
concepts); that is, existence, uniqueness, and continuous dependence on data
holds.

Inverse problems are ill-posed (or improperly posed), in particular, solution does
not depend continuously on data (in natural topologies).
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SKIT

(B) lll-Posedness and Regularization

Common properties of examples:

Direct problems are well-posed (in suitable function spaces and solution
concepts); that is, existence, uniqueness, and continuous dependence on data
holds.

Inverse problems are ill-posed (or improperly posed), in particular, solution does
not depend continuously on data (in natural topologies).

First two problems (backwards heat equation, Radon transform) are linear,
leading to linear integral equations of the first kind, last two equations
(impedance tomography, inverse scattering problem) are non-linear.
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SKIT

(B) lll-Posedness and Regularization

Common properties of examples:

Direct problems are well-posed (in suitable function spaces and solution
concepts); that is, existence, uniqueness, and continuous dependence on data
holds.

Inverse problems are ill-posed (or improperly posed), in particular, solution does
not depend continuously on data (in natural topologies).

First two problems (backwards heat equation, Radon transform) are linear,
leading to linear integral equations of the first kind, last two equations
(impedance tomography, inverse scattering problem) are non-linear.

We model the problems by tripel (X, Y, K) where X and Y are normed spaces
and K : X — Y a continuous linear or nonlinear operator (with domain

D(K) C X and range R(K) C Y).

Direct problem: Given x € X, evaluate K(x)!

Inverse problem: Given y € R(K) determine solution x € D(K) with K(x) = y!
lll-posedness (if K injective and surjective): K~ is not continuous
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10

Setting: X, Y Hilbert spaces, K : X — Y bounded linear operator. For
simplicity: K is also one-to-one.

Theorem Let dim X = oo and K compact. Then:

(a) R(K) is not closed in Y and K~ : R(K) — X is unbounded.
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Setting: X, Y Hilbert spaces, K : X — Y bounded linear operator. For
simplicity: K is also one-to-one.

Theorem Let dim X = oo and K compact. Then:

(a) R(K) is not closed in Y and K~ : R(K) — X is unbounded.

(b) The equation Kx = y is ill-posed - even if K is considered as operator
K: X—=>R(K)CY.
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Setting: X, Y Hilbert spaces, K : X — Y bounded linear operator. For
simplicity: K is also one-to-one.

Theorem Let dim X = oo and K compact. Then:

(a) R(K) is not closed in Y and K~ : R(K) — X is unbounded.

(b) The equation Kx = y is ill-posed - even if K is considered as operator

K: X—=>R(K)CY.

General Assumption: K linear, compact, and one-to-one, y € R(K) and X € X
solution of KX = § and y° € Y (not necessarily in R(K)) with [|y° — 9| < 4.

Aim: Solve (approximately) Kx ~ y° such that x ~ X.
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10

Setting: X, Y Hilbert spaces, K : X — Y bounded linear operator. For
simplicity: K is also one-to-one.

Theorem Let dim X = oo and K compact. Then:

(a) R(K) is not closed in Y and K~ : R(K) — X is unbounded.

(b) The equation Kx = y is ill-posed - even if K is considered as operator
K: X—=>R(K)CY.

General Assumption: K linear, compact, and one-to-one, y € R(K) and X € X
solution of KX = § and y° € Y (not necessarily in R(K)) with [|y° — 9| < 4.
Aim: Solve (approximately) Kx ~ y° such that x ~ X.

Idea of regularization: Approximate K—' : R(K) — X by bounded operators
R, : Y — X for (small) > 0 and set X, 5 := Ray°.
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10

Setting: X, Y Hilbert spaces, K : X — Y bounded linear operator. For
simplicity: K is also one-to-one.

Theorem Let dim X = oo and K compact. Then:

(a) R(K) is not closed in Y and K~ : R(K) — X is unbounded.

(b) The equation Kx = y is ill-posed - even if K is considered as operator
K: X—=>R(K)CY.

General Assumption: K linear, compact, and one-to-one, y € R(K) and X € X
solution of KX = § and y° € Y (not necessarily in R(K)) with [|y° — 9| < 4.

Aim: Solve (approximately) Kx ~ y° such that x ~ X.

Idea of regularization: Approximate K—' : R(K) — X by bounded operators
R, : Y — X for (small) > 0 and set X, 5 := Ray°.

(B1) Tikhonov regularization: R, = (al+K*K)'K*

Lemma R, K converges pointwise to the identity in X as a — 0; that is,
R.Kx — x as a — 0 for every x € X.
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Idea of proof: We have to show that (a/ + K*K)~"K*Kx — x and calculate

(al+ K'K)'K'Kx —x = —a(al+K*'K)'x = —az,

Zo = (al+ K*'K) 'x <= (al + K*K)zy = x

CRC 1173 Wave phenomena
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Idea of proof: We have to show that (a/ + K*K)~"K*Kx — x and calculate

(al+ K'K)'K'Kx —x = —a(al+K*'K)'x = —az,

Zo = (al+ K*'K) 'x <= (al + K*K)zy = x
Multiplication with z,:
thus allz.| <|Ix||. (1)
)

allzal + [Kzal® = (x,20) < [IXIll|zall,

(el + K*K) 'K*Kx —x = —azy = |[|(al+K*K)'K*K — 1] < 1.

Special case: x = K*u € R(K*). With (1):  (x, z,) = (u, Kzo) < ||u]| ||KZa ]|,

thus (1) has the form:
allza|? +[|Kzal? < [lull |Kzall,  thus [|Kza |l < [lu]
thus ||z, ||? < ||ul|? and thus |z, || < v/a]|u||. From (2) we get

(el +K*K)'K*Kx — x| < valu| — 0, a—0.
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Idea of proof: We have to show that (a/ + K*K)~"K*Kx — x and calculate
(al + K*K)'K*Kx —x = —a(al+K'K)'x = —az,
Zo = (al+ K*K) 'x <= (al+ K*K)zy = x
Multiplication with z,:
allzal® +lIKzal® = (x.20) < llxllllzall, thus allzall < [Ix[. (1)
(al+ K*K) 'K*Kx — x = —azy, = [[(al+KK)T'TK'K—1]|<1. (2

Special case: x = K*u € R(K*). With (1):  (x, z,) = (u, Kzo) < ||u]| ||KZa ]|,
thus (1) has the form:

allza|? +[|Kzal? < [lull |Kzall,  thus [|Kza |l < [lu]
thus ||z, ||? < ||ul|? and thus |z, || < v/a]|u||. From (2) we get
(el +K*K)'K*Kx — x| < valu| — 0, a—0.

General case x € X: Note that closure(R(K*)) = N(K)* = X, and use
Theorem of Banach-Steinhaus. O
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So far: R,Kx — x forall x € X and ||R,Kx — x| < cy/a for x € R(K*).
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So far: R, Kx — x for aII x € X and ||[R,Kx — x|| < cy/afor x € R(K*).
7 as seen from previous arguments:

Zy = Ryu = (a/ + K*K) 'K*u is previous definition for x = K*u, thus

vallza|l < luf.
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So far: R, Kx — x for aII x € X and ||[R,Kx — x|| < cy/afor x € R(K*).
7 as seen from previous arguments:

Zo = Ryu = (a/ + K*K) 'K*u is previous definition for x = K*u, thus
valza| < ull-
Analogously: ||R,Kx — x|| < ca?/® for x € R(K*K).
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So far: R, Kx — x for aII x € X and ||[R,Kx — x|| < cy/afor x € R(K*).
7 as seen from previous arguments:

Zo = Ryu = (a/ + K*K) 'K*u is previous definition for x = K*u, thus
valza| < ull-
Analogously: ||R,Kx — x|| < ca?/® for x € R(K*K).

Back to (approximate) solution of . Set xo,5 1= R.y°. Then

a6 =Xl = lIRay’ = Raf + Rad = X|| < |Ra(y’ = )| + Rey — X|
. I d SN
< Ry’ =91 + [IRay — %I < 7t [[Ra KX — X]|.
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So far: R, Kx — x for aII x € X and ||[R,Kx — x|| < cy/afor x € R(K*).
7 as seen from previous arguments:

Zo = Ryu = (a/ + K*K) 'K*u is previous definition for x = K*u, thus
valza| < ull-
Analogously: ||R,Kx — x|| < ca?/® for x € R(K*K).

Back to (approximate) solution of . Set xo,5 1= R.y°. Then

a6 =Xl = lIRay’ = Raf + Rad = X|| < |Ra(y’ = )| + Rey — X|
. I d SN
< Ry’ =91 + [IRay — %I < 7t [[Ra KX — X]|.

If «(6) — 0 and 6%/(6) — 0 as & — 0 then X,(5),5 — X as § — 0.
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So far: R, Kx — x for aII x € X and ||[R,Kx — x|| < cy/afor x € R(K*).
7 as seen from previous arguments:

Zo = Ryu = (a/ + K*K) 'K*u is previous definition for x = K*u, thus
valza| < ull-
Analogously: ||R,Kx — x|| < ca?/® for x € R(K*K).

Back to (approximate) solution of . Set xo,5 1= R.y°. Then

a6 =Xl = lIRay’ = Raf + Rad = X|| < |Ra(y’ = )| + Rey — X|
. I d SN
< Ry’ =91 + [IRay — %I < 7t [[Ra KX — X]|.

If «(6) — 0 and 6%/(6) — 0 as & — 0 then X,(5),5 — X as § — 0.
Order of convergence: If % = K*u then |[x,.s — X|| < % + y/a||ul|. Choose
a = a(d) = ¢ which yields

[Xa(s).s — Xl < (c7V2+c2||ul)) V5.
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So far: R, Kx — x for aII x € X and ||[R,Kx — x|| < cy/afor x € R(K*).
7 as seen from previous arguments:

Zo = Ryu = (a/ + K*K) 'K*u is previous definition for x = K*u, thus
valza| < ull-
Analogously: ||R,Kx — x|| < ca?/® for x € R(K*K).

Back to (approximate) solution of . Set xo,5 1= R.y°. Then

a6 =Xl = lIRay’ = Raf + Rad = X|| < |Ra(y’ = )| + Rey — X|
. I d SN
< Ry’ =91 + [IRay — %I < 7t [[Ra KX — X]|.

If «(6) — 0 and 6%/(6) — 0 as & — 0 then X,(5),5 — X as § — 0.
Order of convergence: If % = K*u then |[x,.s — X|| < % + y/a||ul|. Choose
a = a(d) = ¢ which yields

[Xasy.s — X < (c7V2 +c3||u|)) V5.
Analogously, if % = K*Ku then choose a(6) := ¢ §%/° which yields
[Xa(s).s — X < (72 + 2¢]|u]|) 6%/°.
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So far: R, Kx — x for aII x € X and ||[R,Kx — x|| < cy/afor x € R(K*).
7 as seen from previous arguments:

Zo = Ryu = (a/ + K*K) 'K*u is previous definition for x = K*u, thus
valza| < ull-
Analogously: ||R,Kx — x|| < ca?/® for x € R(K*K).

Back to (approximate) solution of . Set xo,5 1= R.y°. Then

a6 =Xl = lIRay’ = Raf + Rad = X|| < |Ra(y’ = )| + Rey — X|
. I d SN
< Ry’ =91 + [IRay — %I < 7t [[Ra KX — X]|.

If «(6) — 0 and 6%/(6) — 0 as & — 0 then X,(5),5 — X as § — 0.
Order of convergence: If % = K*u then |[x,.s — X|| < % + y/a||ul|. Choose
a = a(d) = ¢ which yields

IXa)6 = X[ < (¢7"/2 +c2|lul)) V5.
Analogously, if % = K*Ku then choose a(6) := ¢ §%/° which yields

IXa().s = %I < (¢7"/2 +2¢||u]) 67/°.
Disadvantage for this a-priori choice: ||u|| not known in advance!
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13

Better is a-posteriori choice by discrepancy principle: Choose « such that

| KX a5 —y‘SH = § where Xxu5= R.y’ . (3)
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13

Better is a-posteriori choice by discrepancy principle: Choose « such that
|KXa.s — Y|l = & where xo5 = Ray’. (3)

Lemma For § < ||y°|| there exists a unique o = (J) with (3). Furthermore, if
% € R(K*) then || x4(5),6 — K|l < ¢ V3.
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Better is a-posteriori choice by discrepancy principle: Choose « such that
|KXa.s — Y|l = & where xo5 = Ray’. (3)

Lemma For § < ||y°|| there exists a unique o = (J) with (3). Furthermore, if
% € R(K*) then || x4(5),6 — K|l < ¢ V3.
Remarks concerning Tikhonov’s regularization method:

(@) Xa,6 = ,‘-1',le‘S is the unique minimizer of the Tikhonov functional
J(x) = | Kx = y° [P + o x]%.
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Better is a-posteriori choice by discrepancy principle: Choose « such that

|KXa.s — Y|l = & where xo5 = Ray’. (3)
Lemma For § < ||y°|| there exists a unique o = (J) with (3). Furthermore, if
% € R(K*) then || x4(5),6 — K|l < ¢ V3.

Remarks concerning Tikhonov’s regularization method:

(@) Xa,6 = ,‘-1',le‘S is the unique minimizer of the Tikhonov functional

J(x) = [[Kx = y° |2 + ol x]2.

(b) The order O(5%/2) is the best possible for the error || x.(s),s — X|| — even f
x € R((K*K)™) for any m > 1.
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13

Better is a-posteriori choice by discrepancy principle: Choose « such that

|KXa.s — Y|l = & where xo5 = Ray’. (3)
Lemma For § < ||y°|| there exists a unique o = (J) with (3). Furthermore, if
% € R(K*) then || x4(5),6 — K|l < ¢ V3.

Remarks concerning Tikhonov’s regularization method:

(@) Xa,6 = ,‘-1’,le‘S is the unique minimizer of the Tikhonov functional

J(x) = [[Kx = y°|2 + o x]%.

(b) The order O(5%/2) is the best possible for the error || x.(s),s — X|| — even f
x € R((K*K)™) for any m > 1.

(c) For the discrepancy principle the order (9(\/5) is the best possible for the
error [|Xa(s),s — X|| —evenif X € R((K*K)™) forany m > 1.
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13

Better is a-posteriori choice by discrepancy principle: Choose « such that
|KXa.s — Y|l = & where xo5 = Ray’. (3)

Lemma For § < ||y°|| there exists a unique o = (J) with (3). Furthermore, if
% € R(K*) then || x4(5),6 — K|l < ¢ V3.

Remarks concerning Tikhonov’s regularization method:

(@) Xa,6 = ,‘-1’,le‘S is the unique minimizer of the Tikhonov functional

J(x) = [|Kx = y°I[? + af|x||2.

(b) The order O(5%/2) is the best possible for the error || x.(s),s — X|| — even f
x € R((K*K)™) for any m > 1.

(c) For the discrepancy principle the order (9(\/5) is the best possible for the

error [|Xa(s),s — X|| —evenif X € R((K*K)™) forany m > 1.

(d) In applications (K integral operator) the conditions X € R(K*) or
% € R((K*K)™) are smoothness assumptions on X combined with compatibility
conditions.
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(B2) Iterative regularization techniques s

Consider again the equation Kx = y°. Assume that K* is one-to-one; that is, K
has dense range. Rewrite Kx = y° as equivalent fixpoint equation in the form
x = x — aK*(Kx — y?) with some parameter a > 0 and iterate:

Xmt1,5 = Xms — aK*(meyg—y‘;), m=0,1,2,...,

with xp s = 0.
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KIT

(B2) Iterative regularization techniques s

Consider again the equation Kx = y°. Assume that K* is one-to-one; that is, K
has dense range. Rewrite Kx = y° as equivalent fixpoint equation in the form
x = x — aK*(Kx — y?) with some parameter a > 0 and iterate:

Xmi1,6 = Xmo — aK*(KXm.s —y5), m=0,1,2,...,
with x5 = 0. Then X, 5 = Rpy? where Ry, : Y — X is given by

—1
Ry = a) (I—aK'K)XK* form=1,2,.... (4)
0

3

>
Il

(Proof by induction with respect to m.) This is Landweber iteration and is the
gradient method (with step size a > 0) corresponding to the minimization of
J(x) = [[Kx = y°||2.
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Instead of discrepancy principle one uses the following stopping rule. Let r > 1
be fixed with r§ < [|y°||. Let m(6) € N such that

[KXm(sy.6 — YOIl < 10 < ||Kxms —y°|| foralm=0,...,m(3)—1. (5)
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Instead of discrepancy principle one uses the following stopping rule. Let r > 1
be fixed with r§ < [|y°||. Let m(6) € N such that

|KXm(s).s = ¥°I < 16 < |[Kxms —y°|| forallm=0,...,m(6)—1. (5)
Theorem Let 0 < a < 1/||K||2. Then lim o0 KXm.s = y° which implies that

there exists m(d) with (5). If X = (K*K)?/2z € R((K*K)/2)) for some z € X
and o > 0 we have the estimate

(| Xm(s),6 — X|| < cl|z|[V/te 1) o/t (6)

for some ¢ > 0 independent of 4.
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Instead of discrepancy principle one uses the following stopping rule. Let r > 1
be fixed with r§ < [|y°||. Let m(6) € N such that

|KXm(s).s = ¥°I < 16 < |[Kxms —y°|| forallm=0,...,m(6)—1. (5)
Theorem Let 0 < a < 1/||K||2. Then lim o0 KXm.s = y° which implies that
there exists m(d) with (5). If X = (K*K)?/2z € R((K*K)/2)) for some z € X
and o > 0 we have the estimate

[Xmsy,s — X|| < cllz)|/e+D) go/ 1) (6)

for some ¢ > 0 independent of 4.
Conjugate gradient method: xo =0, pp = —K*y°.

(me - y57 Kpm)

X = X, — | ty = ~—— =~ 7/
m-+1 m mpm; m ||Kpm||2 )
K*(Kxm+1 — ¥°)|1?
— K*(K 0 — || m+
pm+1 ( Xm+1 .y ) + Pympm 9 'Vm HK*(KXm . y§)||2 9
m=0,1,.... With the same stopping rule as above the same theorem holds.
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(B3) Remarks A\‘(IT

Karlsruhe Institute of Technology

® There exist extensions of Tikhonov’s method (iterated Tikhonov’'s method)
and the discrepancy principle to extend the order optimality (9(52/3) and
O(V/9), respectively.
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(B3) Remarks

® There exist extensions of Tikhonov’s method (iterated Tikhonov’'s method)
and the discrepancy principle to extend the order optimality (9(52/3) and
O(V/9), respectively.

® There exist heuristic strategies for choosing «, for example the L—method
(plotting o — (||Kxa,s — ¥°|I?, || Xa,5]|?) € R? which has form of an L and
choose left lower corner.)
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(B3) Remarks

® There exist extensions of Tikhonov’s method (iterated Tikhonov’'s method)
and the discrepancy principle to extend the order optimality (9(52/3) and
O(V/9), respectively.

® There exist heuristic strategies for choosing «, for example the L—method
(plotting o — (||Kxa,s — ¥°|I?, || Xa,5]|?) € R? which has form of an L and
choose left lower corner.)

@ Tikhonov regularization and Landweber method: Fw’ay5 and .‘-"1’,,,y5 are linear
wrt y9, cg-method: R, = Ry,(y?) is non-linear with respect to y°.

16 June 2023 Andreas Kirsch, Athens: CRC 1173 Wave phenomena



(B3) Remarks A\‘(IT

® There exist extensions of Tikhonov’s method (iterated Tikhonov’'s method)
and the discrepancy principle to extend the order optimality (9(52/3) and
O(V/9), respectively.

® There exist heuristic strategies for choosing «, for example the L—method
(plotting o — (||Kxa,s — ¥°|I?, || Xa,5]|?) € R? which has form of an L and
choose left lower corner.)

@ Tikhonov regularization and Landweber method: Fw’ay5 and .‘-"1’,,,y5 are linear
wrt y9, cg-method: R, = Ry,(y?) is non-linear with respect to y°.

® Construction of regularization operators R, with singular systems
{oj, %,y :j € N} of K : X — Y, for example spectral cut-off, iterated
Tikhonov regularization, v—methods.
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(B3) Remarks A\‘(IT

® There exist extensions of Tikhonov’s method (iterated Tikhonov’'s method)
and the discrepancy principle to extend the order optimality (9(52/3) and
O(V/9), respectively.

® There exist heuristic strategies for choosing «, for example the L—method
(plotting o — (||Kxa,s — ¥°|I?, || Xa,5]|?) € R? which has form of an L and
choose left lower corner.)

@ Tikhonov regularization and Landweber method: Fw’ay5 and .‘-"1’,,,y5 are linear
wrt y9, cg-method: R, = Ry,(y?) is non-linear with respect to y°.

® Construction of regularization operators R, with singular systems
{oj, %,y :j € N} of K : X — Y, for example spectral cut-off, iterated
Tikhonov regularization, v—methods.

® Construction of regularization operators R}, by discretization; that is replace
K: X — Yby Ky : Xy — Yy with finite dimensional X, Y.
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(C) Inverse Scattering Theory A\‘(IT
Recall the model for the scattering problem:
Total field u is sum of incident field u™ and scattered field u®; that is:
u = U + u® satisfies the Helmholtz equation
Au+knu=0 inR®,
and u® satisfies Sommerfeld’s radiation condition (SRC)

or
uniformly with respect to X = x/|x| € S? (=unit sphere).

—iku(x) = O(r?), r=|x|— o0,
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(C) Inverse Scattering Theory

Recall the model for the scattering problem:
Total field u is sum of incident field U™ and scattered field u®; that is:
u = U + u® satisfies the Helmholtz equation
Au+knu=0 inR®,

and u® satisfies Sommerfeld’s radiation condition (SRC)

ou®(x)

or

uniformly with respect to X = x/|x| € S? (=unit sphere).
Examples for incident fields (satisfy Helmholtz equation for n = 1):

—iku(x) = O(r?), r=|x|— o0,

(a) Plane wave of direction € S2: U (x) = ek x e R®.

)
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(C) Inverse Scattering Theory

Recall the model for the scattering problem:
Total field u is sum of incident field U™ and scattered field u®; that is:
u = U + u® satisfies the Helmholtz equation
Au+knu=0 inR®,

and u® satisfies Sommerfeld’s radiation condition (SRC)

ous(x

761(' ) _ iku®(x) = O(r?), r=|x| = o0,
uniformly with respect to X = x/|x| € S? (=unit sphere).
Examples for incident fields (satisfy Helmholtz equation for n = 1):

(a) Plane wave of direction § € S2: um(x) = "0 xeR®.
(b) Spherical wave with source point z € R® (fundamental solution)

exp(ik|x — z|) x4z

d(x, =
(x.2) 4m|x — Z|
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The direct problem

Au+KPnu=0inR®, u°:=u— u™ satisfies SRC.

For n € L>°(R3) where q := n — 1 has bounded support the solution is
searched for in (local) Sobolev space H2 (R?).
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Karlsruhe Institute of Technology

The direct problem

Au+KPnu=0inR®, u°:=u— u™ satisfies SRC.

For n € L>°(R3) where q := n — 1 has bounded support the solution is

searched for in (local) Sobolev space H2 (R?).
Theorem: There exists at most one solution of the direct scattering problem

(uniqueness).
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KIT

The direct problem

Au+KPnu=0inR®, u°:=u— u™ satisfies SRC.
For n € L>°(R3) where q := n — 1 has bounded support the solution is
searched for in (local) Sobolev space H2 (R?).

Theorem: There exists at most one solution of the direct scattering problem
(uniqueness).

Proof is based on Lemma of Rellich and unique continuation:

Lemma of Rellich: For k > 0 (real valued) and Au + k?u = 0 for |x| > Ry it
holds that:

R—o0

lim / luds =0 implies u=0for|x| > Ry.
|x|=R

Unique Continuation: Let u € H2(IR®) satisfy Au + k?nu = 0in R3. If u = 0 on
some open set then u vanishes everywhere.
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KIT

Proof of Uniqueness

Uniqueness of direct problem: Assume u is difference of two solutions. Then
Au+ k?nu = 0 in R® and u satisfies the SRC. Then:

’—/ku ds = /

[x|=R |x|=R

Ju
+k2|u| ds + 2k|m/ ua—ds

The left hand side tends to zero by the SRC. Green’s theorem yields
du
/ ua—u ds = /[|Vu|2 + uAT] dx = /[|Vu|2 — K?n|uf?] dx
|x|=R Bg Br

and this is real valued. Therefore, le\=R |ul?ds — 0as R — oo.

Rellich’s Lemma and unique continuation imply u = 0 in R3. O
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KIT

.
Existence

Existence is based on volume potential for fundamental solution ®.
Theorem: For ¢ € L?(D) the potential

vx) = / o) O(xy)dy, xcR®,

is the only radiating solution v € H2,(R®) of Av + k?v = —p in R®.
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KIT

.
Existence

Existence is based on volume potential for fundamental solution ®.
Theorem: For ¢ € L?(D) the potential

) = [y dy, xe B,
D
is the only radiating solution v € H2,(R®) of Av + k?v = —p in R®.
Rewrite Au + k?nu = 0 as Au + k*u = —k®qu where q := n — 1, thus also
Au® + k?u® = —k2qu, thus by theorem:

u(x) — (%) = u(x) = K / aly) uy) d(x.y) dy, x € R°.

Restriction to x € D yields Lippmann-Schwinger integral equation.
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.
Existence

Existence is based on volume potential for fundamental solution ®.
Theorem: For ¢ € L?(D) the potential

vx) = / o) O(xy)dy, xcR®,

is the only radiating solution v € H2,(R®) of Av + k?v = —p in R®.

Rewrite Au + k?nu = 0 as Au + k*u = —k®qu where q := n — 1, thus also
Au® + k?u® = —k2qu, thus by theorem:

u(x) — (%) = u(x) = K / aly) uy) d(x.y) dy, x € R°.

Restriction to x € D yields Lippmann-Schwinger integral equation.

Theorem: For every n € L°°(D) such that g := n — 1 is supported in D there
exists a unique solution u € HZ_(R3) of the direct scattering problem. u|p solves
the Lippmann-Schwinger integral equation.
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Far Field Pattern

Recall Lippmann-Schwinger integral equation

U(x) — (%) = v(x) = K / aly) uly) ®(x, y) dy
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Far Field Pattern

Recall Lippmann-Schwinger integral equation

U(x) — (%) = v(x) = K / aly) uly) d(x.y) dy, x €R°.

Asymptotic behavior ®(x, z) = UK g—iksz  O(1 /|x|?) yields

47|x|

exp(ik|x|)

(o oF Y 1 2
e U+ O(/IxE), x>0,

u(x) =
uniformly wrt X := x/|x| € S? with far field pattern
() = K /D aly)uy)e "V dy, e S,
For u™(x) = exp(ikf - x) we have u™® = u>(%, 0).
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The Inverse Scattering Problem ﬂ(IT

Karlsruhe Institute of Technology

Inverse scattering problem: Determine (properties of) the contrast
q(x) = n(x) — 1 from the knowledge of u> (%, ) for all X, 6 € S?!

2D-Example: Here %, € S' 2 (0, 27)
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Uniqueness of Inverse Scattering Problem s

Left example:

Theorem of Karp:  If u>(%,0) = (% - 0) for all %,0 € S?, then g is radially
symmetric; that is, g(x) = f(|x]) for some function f € L>°(R~¢). In particular,
the support of g is a ball.
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Uniqueness of Inverse Scattering Problem s

Left example:

Theorem of Karp:  If u°°()?,9A) = (X - 0) forall X, 0 € S2, then q is radially
symmetric; that is, g(x) = f(|x]) for some function f € L>°(R~¢). In particular,
the support of g is a ball.

Uniqueness of the inverse scattering problem:

Theorem The far field patterns u>° (X, 9) determine n uniquely; that is, if
nj <> u*(%,0) forj=1,2, then:

ue(%,0) = ug* (%, 0) forall %,0 € 8 = ny =ny.

In R3: Nachman (1988), Novikov (1988), Ramm (1988)
In R?: Bukhgeim (2008)

Drossos Gintides will talk on this topic!
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Reconstruction Techniques
(a) Linearization, e.g. Born approximation: Recall L-S-eqn:

u(x) = u '"°(>+k2/D aly) uy) ®(x.y)dy. x€D.

Iteration converges if norm of operator is less than 1. First iteration:

us(x) = u™(x) + k2/ qly) u™(y) ®(x,y)dy, xcR®,
D
B0 = K [ anuedoenyd, xer,
D
(36 = K / aly) i (y. B) eV dy
D

- kz/ aly) " dy = K k(% 0)), %0 € S
D

Determine q from Fourier transform on ball; that is, for
k(x —0) € {z € R®: |z| < 2k}. Problem is linear and ill-posed!
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(b) lterative methods to determine contrast function g: Define mapping

T : L°(D) — L3(S? x $?), q+— u™. Apply iterative method to solve

T(q) = f |for g where f = f(%,0) is given (measured) far field pattern.
Possible methods: Newton-type methods, gradient-type methods, second order
methods.

Derivative: 7'(g)h = v> where v is radiating solution of

Av + k?(1+ q)v = —k?hu. Derivative 7'(q) is compact and one-to-one!

Advantages: Very general, accurate, incorporation of a priori information
possible.

Disadvantages: “Expensive”, only local convergence is expected, no rigorous
convergence result known.
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(c) Sampling Methods. They determine only support D of q. Choose set of
sampling objects, e.g. points z € R3, and construct binary criterium which uses
only the data u*° to decide whether or not z belongs to D.
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(c) Sampling Methods. They determine only support D of q. Choose set of
sampling objects, e.g. points z € R3, and construct binary criterium which uses
only the data u*° to decide whether or not z belongs to D. Members of this
group: Linear Sampling Method by Colton/Kirsch, Factorization Method by Kirsch
(both use points z € R® as sampling objects), Probe Method by lkehata (curves),
No-Response-Test by Luke/Potthast (domains), Singular Sources Method by
Potthast (points, in combination with Point Source Meth.)
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(c) Sampling Methods. They determine only support D of q. Choose set of
sampling objects, e.g. points z € R3, and construct binary criterium which uses
only the data u*° to decide whether or not z belongs to D. Members of this
group: Linear Sampling Method by Colton/Kirsch, Factorization Method by Kirsch
(both use points z € R® as sampling objects), Probe Method by lkehata (curves),
No-Response-Test by Luke/Potthast (domains), Singular Sources Method by
Potthast (points, in combination with Point Source Meth.)

We discuss only Factorization Method.

Advantages: Fast, avoids computation of direct problems, no a priori information
on type of boundary condition or number of components necessary,
mathematically elegant and rigorous, gives characteristic function of

D = supp(n — 1) explicitely.
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(c) Sampling Methods. They determine only support D of q. Choose set of
sampling objects, e.g. points z € R3, and construct binary criterium which uses
only the data u*° to decide whether or not z belongs to D. Members of this
group: Linear Sampling Method by Colton/Kirsch, Factorization Method by Kirsch
(both use points z € R® as sampling objects), Probe Method by lkehata (curves),
No-Response-Test by Luke/Potthast (domains), Singular Sources Method by
Potthast (points, in combination with Point Source Meth.)

We discuss only Factorization Method.

Advantages: Fast, avoids computation of direct problems, no a priori information
on type of boundary condition or number of components necessary,
mathematically elegant and rigorous, gives characteristic function of

D = supp(n — 1) explicitely.

Disadvantages: Needs u> (%, #) for many (in theory: all) X, &, no incorporation of
a-priory information possible, very sensitive to noise.
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Factorization Method

Factorization Method determines only support of g := n — 1! Values of
q € L>(R?3) do not have to be known in advance.

Define far field operator F : L2(S?) — L?(S?) by

(Fg)(%) = /5 2 u™(x,0)g(d) ds(d), xe 2.
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Factorization Method

Factorization Method determines only support of g := n — 1! Values of
q € L>(R?3) do not have to be known in advance.

Define far field operator F : L2(S?) — L?(S?) by

(Fg)(%) = [s 2 u™(x,0)g(d) ds(d), xe 2.

Properties of F:
® fis compact.
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Factorization Method

Factorization Method determines only support of g := n — 1! Values of
q € L>(R?3) do not have to be known in advance.

Define far field operator F : L2(S?) — L?(S?) by

(Fg)(%) = [s 2 u™(x,0)g(d) ds(d), xe 2.

Properties of F:
® fis compact.
® |f g is real-valued then F is normal; thatis, F*F = F F*, and even:
S:=1+ X F isunitary (=scattering matrix).
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Factorization Method

Factorization Method determines only support of g := n — 1! Values of
q € L>(R?3) do not have to be known in advance.

Define far field operator F : L2(S?) — L?(S?) by

(Fg)(%) = [s 2 u™(x,0)g(d) ds(d), xe 2.

Properties of F:

® fis compact.

® If g is real-valued then F is normal; that is, F*F = F F*, and even:
S:=1+ X F isunitary (=scattering matrix).

® F is one-to-one if k2 is not an interior transmission eigenvalue;
that is, Au+K(1+qu=0inD, Aw+k*w=0inD,

u=wondD, 09u/dv=0w/IdvondD,

implies u = w = 0 in D. (Fioralba Cakoni will talk on this topic!)
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Factorization

Recall:
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Factorization

Recall: Au+ k2(1+ q)u = 0 and Au™ + k2u™® = 0 where u"™(x) = e0x,
The scattered field satisfies

AU+ K2 (1 + q)u® = —k%qu™ inRR3.
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Factorization

Recall: Au+ k2(1+ q)u = 0 and Au™ + k2u™® = 0 where u"™(x) = e0x,
The scattered field satisfies

AU+ K2 (1 + q)u® = —k%qu™ inRR3.
Theorem: F : L%(S?) — L2(S?) has factorization |F = H*TH| where

H : L%(S?) — L?(D) is defined as

(Hg)(x) = /u’”C(X,HA) g(d) ds(f) = /e”‘x'é g(f)ds(d), x e D,
2 2
and T : L?(D) — L3(D) is defined as Tf = kq(f + v) where v is the radiating

solution of
Av+ K (1 +q)v = —k?qgf inR3.
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Range Identity

This is factorization, what'’s the method?
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Karlsruhe Institute of Technology

Range Identity

This is factorization, what's the method?
Theorem: Let R3\ D be connected. For any z € R3 define ¢, € L?(S?) by

ba(X) = e 7 xe &2,

Then ze D if,andonlyif, ¢, € R(H*).
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Range Identity

This is factorization, what's the method?

Theorem: Let R3\ D be connected. For any z € R3 define ¢, € L?(S?) by
$2(%) = e 7 e 2.

Then ze D if,andonlyif, ¢, € R(H*).

Proof: (H*¢)(X) :/ oy)e ™Y dy L ez fe R,
D

This is equivalent to (because complement of D is connected)

() / p() O, y)dy = (x,2), x¢(DU{z}).
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Range Identity A\‘(IT

Karlsruhe Institute of Technology

This is factorization, what's the method?
Theorem: Let R3\ D be connected. For any z € R3 define ¢, € L?(S?) by

$2(%) = e 7 e 2.
Then ze D if,andonlyif, ¢, € R(H*).

Proof: (H*¢)(X) :/ oy)e ™Y dy L ez fe R,
D

This is equivalent to (because complement of D is connected)

(%) /D o(y)P(x,y)dy = ®(x,z), x¢(DU{z}).

z € D: Choose ® € C*(R?) with ®(x) = ®(x, z) outside of D and define ¢
by [, w(y)®(,y)dy = ® in R3; that is, —p = AP + k2,
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Range Identity A\‘(IT

Karlsruhe Institute of Technology

This is factorization, what's the method?
Theorem: Let R3\ D be connected. For any z € R3 define ¢, € L?(S?) by

$2(%) = e 7 e 2.
Then ze D if,andonlyif, ¢, € R(H*).

Proof: (H*¢)(X) :/ oy)e ™Y dy L ez fe R,
D

This is equivalent to (because complement of D is connected)

(%) /D o(y)P(x,y)dy = ®(x,z), x¢(DU{z}).

z € D: Choose ® € C*(R?) with ®(x) = ®(x, z) outside of D and define ¢
by [, w(y)®(,y)dy = ® in R3; that is, —p = AP + k2,

z ¢ D: (%) can not have a solution! (Left hand side bounded, right hand side
unbounded for x — z.)
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Recall: [F=H"TH| and |z€ D<= ¢, € R(H")

Goal: Express range R(H*) by known operator F!
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Recall: [F=H"TH| and |z€ D<= ¢, € R(H")

Goal: Express range R(H*) by known operator F!

General situation for Hilbert spaces X, Y:
F

Y

X X

Theorem: If T : X — X is selfadjoint and coercive; that is,

W, Te) =(TY,0), (o, Te) >cllol forally,pe X,

then R(H*) = R(F'/?).
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Theorem: Let F = Hf T{H; = H; ToH, such that T; : X; — X; is coercive in the
sense that

(T, 0)| > clellk forallp e R(H), j=1,2.

Then R(H;) = R(Hs).
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Theorem: Let F = Hf T{H; = H; ToH, such that T; : X; — X; is coercive in the
sense that

‘(chp,@’ > C||<pH§(/ forallp € R(H,), j=1,2.

Then R(H;) = R(Hs).
The proof follows from inf—condition (Kirsch) or a theorem of Nachman,
Pavarinta, Teirila: Let H = H; or H,. Then

p € R(H) <= Fc>0: [(g,¢)y[> < c|(Fp, )|V eY
= inf{[(FY,¥)y|: (s, )y =1} > 0

— ¢ L{Y:(F,¢)y =0}
¥)

(=N(H ) and
sup{[{¢, ¥)v| : [(Fi, )y

1} <

Y
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Theorem: Let F=H*TH:Y — Y beone-to-one and such that / + irF is

unitary for some r > 0. Furthermore, let T : X — X be comp. perturb. of s.a.
and coercive operator and Im{y, T) # 0 for all ¢ € closure R(H) with ¢ # 0.
Then |R(H*)=R(|F|"/?).
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Theorem:Let F=H*TH:Y — Y beone-to-one and such that / + irF is
unitary for some r > 0. Furthermore, let T : X — X be comp. perturb. of s.a.
and coercive operator and Im{y, T) # 0 for all ¢ € closure R(H) with ¢ # 0.
Then |R(H*)=R(|F|"/?).

Idea of proof: [+ irF unitary implies F normal and thus 3 ONS with
Fij = A
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Theorem:Let F=H*TH:Y — Y beone-to-one and such that / + irF is
unitary for some r > 0. Furthermore, let T : X — X be comp. perturb. of s.a.
and coercive operator and Im{y, T) # 0 for all ¢ € closure R(H) with ¢ # 0.
Then |R(H*)=R(|F|"/?).

Idea of proof: [+ irF unitary implies F normal and thus 3 ONS with
Fi; = Apbj. Then F = H*TH = |F['/2S|F|'/2  where

FIV20 = 32 /Il vy vy,

Aj
Sy > Tyl (v e
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Theorem:Let F=H*TH:Y — Y beone-to-one and such that / + irF is
unitary for some r > 0. Furthermore, let T : X — X be comp. perturb. of s.a.
and coercive operator and Im{y, T) # 0 for all ¢ € closure R(H) with ¢ # 0.
Then |R(H*)=R(|F|"/?).

Idea of proof: [+ irF unitary implies F normal and thus 3 ONS with
Fi; = Apbj. Then F = H*TH = |F['/2S|F|'/2  where

FIV20 = 32 /Il vy vy,

i
Si Z]m (W, i)y ¥ O

)\.
(S, )| = ‘ZIM (W, v v

> cllvly
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Characterization of Scatterer

Let k2 be no int. transm. eigenvalue, q real, g(x) > go on D.
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Characterization of Scatterer A\‘(IT

Karlsruhe Institute of Technology

Let k2 be no int. transm. eigenvalue, q real, g(x) > go on D.

Recal: F=H*TH and F is one-to-one and / + %F is unitary and
T:L3(D) — L3(D), fw~ k2q(f+ v)is compact perturbation of coercive
operator and Im(p, T) > 0 for all ¢ € closure R(H), ¢ # 0. Then

|<T<P,<P>’ > CH‘P”%Z(D)-
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Characterization of Scatterer A\‘(IT

Karlsruhe Institute of Technology

Let k2 be no int. transm. eigenvalue, q real, g(x) > go on D.

Recal: F=H*TH and F is one-to-one and / + %F is unitary and
T:L3(D) — L3(D), fw~ k2q(f+ v)is compact perturbation of coercive
operator and Im(p, T) > 0 for all ¢ € closure R(H), ¢ # 0. Then

(T, 0] = cllelf ) Thus | R(H*) = R(|F|"2).
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Characterization of Scatterer

Let k2 be no int. transm. eigenvalue, q real, g(x) > go on D.

Recal: F=H*TH and F is one-to-one and / + gF is unitary and
T:L3(D) — L3(D), fw~ k2q(f+ v)is compact perturbation of coercive
operator and Im(p, T) > 0 for all ¢ € closure R(H), ¢ # 0. Then

(T, 0] = cllelf ) Thus | R(H*) = R(|F|"2).

Combination of previous theorems:
Theorem: Let again ¢,(X) = exp(—ikX - z), x € S?.

Under above assumptions: zeD <= ¢, R(|F|'?)
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Characterization of Scatterer

Let k2 be no int. transm. eigenvalue, q real, g(x) > go on D.

Recal: F=H*TH and F is one-to-one and / + gF is unitary and
T:L3(D) — L3(D), fw~ k2q(f+ v)is compact perturbation of coercive
operator and Im(p, T) > 0 for all ¢ € closure R(H), ¢ # 0. Then

(T, 0] = cllelf ) Thus | R(H*) = R(|F|"2).

Combination of previous theorems:
Theorem: Let again ¢,(X) = exp(—ikX - z), x € S?.

Under above assumptions: zeD <= ¢, R(|F|'?)

Let {); : j € N} C C be eigenvalues of (normal!) operator F with normalized
eigenfunctions v; € L2(S?) for j € N. Then:

zED <« Z|¢27w1>L2| |:Z|¢z»7/}j LZ‘ ] ~0.

2Ty 2]y
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Media with Absorption

Now g € L>°(R3) complex valued, Img > 0. Still| F = H*TH| but not
normal anymore. Define

1

ReF = §(F+F*) = H*(ReT)H
1

mF = (F=F) = H(mT)H

Fu =def \ReF| + ImF
Then Fy = H* TH with coercive T.
Theorem: zeD <= ¢, ¢ R(F;#/z)

Let {)\ : j € N} C R be eigenvalues of (selfadjoint!) operator F with
normalized eigenfunctions ¢; € L?(S?) for j € N. Then:

—1
zep o Y L0l o oy [ L0tel ] o

jeN J jeN J
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Extensions

Factorization method needs only far field patterns u>°(Xx, 9) for all %,0 € S2. If
these are available, the method can be implemented.

However, the method has to be justified for all models of wave propagation.
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Extensions

Factorization method needs only far field patterns u>°(Xx, 9) for all %,0 € S2. If
these are available, the method can be implemented.
However, the method has to be justified for all models of wave propagation.
® Reduced data: A C S? (relative) open,data: u°°()?,9) for %,0 € A (i.e.
forward scattering): FM justified by using projection onto L2(A).
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Extensions A\‘(IT

Karlsruhe Institute of Technology

Factorization method needs only far field patterns u>°(Xx, 9) for all %,0 € S2. If
these are available, the method can be implemented.
However, the method has to be justified for all models of wave propagation.
® Reduced data: A C S? (relative) open,data: u°°()?,9) for X,0 € Afi.e.
forward scattering): FM justified by using projection onto L2(A).
® Point source incidence: u™(x) = ®(x,z) forz € T.
Data: scattered fields u(x, z) for x, z € I'. Factorization: F = H*TH, no
range identity known, thus FM not justified!
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Extensions

Factorization method needs only far field patterns u>°(Xx, 9) for all %,0 € S2. If
these are available, the method can be implemented.
However, the method has to be justified for all models of wave propagation.
® Reduced data: A C S? (relative) open,data: u°°()?,9) for X,0 € Afi.e.
forward scattering): FM justified by using projection onto L2(A).
® Point source incidence: u™(x) = ®(x,z) forz € T.
Data: scattered fields u(x, z) for x, z € I'. Factorization: F = H*TH, no
range identity known, thus FM not justified!
“Wrong” point source incidence u"(x) = ®(x, z) for z € I': FM justified. If

[ surrounds D then uy,,,.(x, Z) are computable from u®(x, 2).

35 June 2023 Andreas Kirsch, Athens: CRC 1173 Wave phenomena



SKIT

Extensions

Factorization method needs only far field patterns u>°(Xx, 9) for all %,0 € S2. If
these are available, the method can be implemented.
However, the method has to be justified for all models of wave propagation.
® Reduced data: A C S? (relative) open,data: u°°()?,9) for X,0 € Afi.e.
forward scattering): FM justified by using projection onto L2(A).
® Point source incidence: u™(x) = ®(x,z) forz € T.
Data: scattered fields u(x, z) for x, z € I'. Factorization: F = H*TH, no
range identity known, thus FM not justified!
“Wrong” point source incidence u"(x) = ®(x, z) for z € I': FM justified. If
[ surrounds D then uy,,,.(x, Z) are computable from u®(x, 2).
® Obstacles D with boundary conditions:
® Scattering by an arc (in R?) or screen (in R%): FM justified.
® Scattering by impenetrable obstacle with Dirchlet-, Neumann-, impedance-,
conductive boundary conditions: FM justified.
Mixed boundary conditions (D = Dy U D, Dirichlet bc on 9Dy, Neumann bc
on 9D-) not justified!
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Other models of wave propagation:
® Anisotropic media, e.g. V - (AVu) + k?u =0
@ Electromagnetic wave propagation, modelled by Maxwell’s equations
a Elastic wave propagation, modelled by Navier’s equations
a Stokes problem
® Hybrid model: elastic core in fluid

Nonlinear Helmholtz equation

Impedance tomography

Periodic structures

Wave guides
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Numerical Simulations in R?

Recall:

zeD Z|¢z’w’“| < 00

]y
¢Z7’(/)]L2|:| O
=[xl -

Therefore, sign(w) is the characteristic function of D!

The following examples show plots of

B>

for N = 32 or N = 36, respectively.
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Numerical Simulations

Dirichlet boundary conditions:

8

-4 =2 o 2 4 B 8
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Numerical Simulations

Scattering by an open arc:
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Numerical Simulations

Real data:
50
150
10
il
- 20
N 10
o 5 a 5 0
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Numerical Simulations

3D-Example (joint work with A. Kleefeld): Scattering under conductive
transmission conitions

Au+Kku=0 inR®\aD,

1
15 15 !
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Thank you for your attention!
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