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Outline of the Course



We begin with important and classical examples:
Example A (Backwards heat equation) One-dimensional heat equation

∂u(x , t)
∂t

=
∂2u(x , t)
∂x2 , (x , t) ∈ (0, π)× R>0 ,

with boundary and initial conditions

u(0, t) = u(π, t) = 0, t ≥ 0 , u(x , 0) = u0(x), 0 ≤ x ≤ π .

Separation of variables leads to the (formal) solution

u(x , t) =
∞∑

n=1

an e−n2t sin(nx) with an =
2
π

π∫
0

u0(y) sin(ny)dy .
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Direct problem: Given u0 and T > 0, determine u(·,T ).

Inverse problem: Measure u(·,T ) and determine u(·, τ) for given τ < T .

Recall:

u(x ,T ) =
2
π

∞∑
n=1

π∫
0

u(y , τ) sin(ny)dy e−n2(T−τ) sin(nx) .

Therefore, determine v := u(·, τ) from integral equation

u(x ,T ) =

π∫
0

k(x , y) v(y) dy , 0 ≤ x ≤ π ,

where

k(x , y) :=
2
π

∞∑
n=1

e−n2(T−τ) sin(nx) sin(ny) .

Inverse problem leads to solving a Fredholm integral equation of the first kind!
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Example B (Computer tomography)

Consider a fixed plane through a human body. ρ(x1, x2) is change of density at
(x1, x2) and has to be determined from measurements of (attenuations of)
intensities I = I(L) of X-rays along lines L in the plane.

- x1
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x2
L
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s
δAAK

Parametrization of L = Ls,δ:(
x1

x2

)
= s

(
cos δ

sin δ

)
+ t

(
− sin δ

cos δ

)
∈ R2, t ∈ R .
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The attenuation of the intensity I is approximately described by dI = −γ ρ I dt
with some constant γ. Integration along the ray yields

ln Is,δ = −γ
∞∫

−∞

ρ(s cos δ − t sin δ, s sin δ + t cos δ) dt .

Direct problem: Given ρ (with compact support), compute line integrals.
Inverse problem: Determine ρ(x1, x2) from Radon transform

(Rρ)(s, δ) :=

∞∫
−∞

ρ(s cos δ − t sin δ, s sin δ + t cos δ) dt , (s, δ) ∈ R× [0, π) .

Special case: ρ = ρ(r) radially symmetric, only vertical rays. This leads to Abel’s
integral equation for z 7→ ρ(

√
R2 − z):

V
(√

R2 − y
)
= −γ

y∫
0

ρ(
√

R2 − z)√
y − z

dz, 0 ≤ y ≤ R2 .
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Example C (Impedance tomography)

Let D ⊂ R2 cross-section through body and γ = γ(x1, x2) conductivity. Apply
current distribution f on boundary ∂D. The potential u satisfies

div(γ∇u) = 0 in D , γ ∂u/∂ν = f on ∂D .

Direct problem: Given γ and f , solve boundary value problem for u!

If D is bounded Lipschitz domain and γ ∈ L∞(D) with γ(x) ≥ γ0 for x ∈ D this
is elliptic boundary value problem with boundary conditions of Neumann type!

Inverse problem: Measure u on ∂D for many fluxes f and determine γ in D.
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Example D (Inverse scattering problem)

D

n = n(x) ̸= 1

n ≡ 1

-
uinc

�����:us

XXXXXzus

Direct scattering problem: Given n ∈ L∞(R3) such D := supp(n − 1) is
bounded, the wave number k > 0, and the incident field uinc(x) = eik θ̂·x with
θ̂ ∈ S2 (unit sphere), find the total field u = u(x) with ∆u + k2nu = 0 in R3 such
that us := u − uinc satisfies a radiation condition for |x | → ∞.

Inverse scattering problem: Given u far away from D for all directions θ̂ ∈ S2,
find n or at least the shape of D = supp(n − 1).
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Common properties of examples:
Direct problems are well-posed (in suitable function spaces and solution
concepts); that is, existence, uniqueness, and continuous dependence on data
holds.

Inverse problems are ill-posed (or improperly posed), in particular, solution does
not depend continuously on data (in natural topologies).

First two problems (backwards heat equation, Radon transform) are linear,
leading to linear integral equations of the first kind, last two equations
(impedance tomography, inverse scattering problem) are non-linear.

We model the problems by tripel (X ,Y ,K ) where X and Y are normed spaces
and K : X → Y a continuous linear or nonlinear operator (with domain
D(K ) ⊂ X and range R(K ) ⊂ Y ).

Direct problem: Given x ∈ X , evaluate K (x)!
Inverse problem: Given y ∈ R(K ) determine solution x ∈ D(K ) with K (x) = y !
Ill-posedness (if K injective and surjective): K−1 is not continuous
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Setting: X ,Y Hilbert spaces, K : X → Y bounded linear operator. For
simplicity: K is also one-to-one.

Theorem Let dimX = ∞ and K compact. Then:
(a) R(K ) is not closed in Y and K−1 : R(K ) → X is unbounded.

(b) The equation Kx = y is ill-posed - even if K is considered as operator
K : X → R(K ) ⊂ Y .

General Assumption: K linear, compact, and one-to-one, ŷ ∈ R(K ) and x̂ ∈ X
solution of K x̂ = ŷ and yδ ∈ Y (not necessarily in R(K )) with ∥yδ − ŷ∥ ≤ δ.

Aim: Solve (approximately) Kx ≈ yδ such that x ≈ x̂ .

Idea of regularization: Approximate K−1 : R(K ) → X by bounded operators
Rα : Y → X for (small) α > 0 and set xα,δ := Rαyδ.

(B1) Tikhonov regularization: Rα := (αI + K ∗K )−1K ∗

Lemma RαK converges pointwise to the identity in X as α→ 0; that is,
RαKx → x as α→ 0 for every x ∈ X .
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Idea of proof: We have to show that (αI + K ∗K )−1K ∗Kx → x and calculate

(αI + K ∗K )−1K ∗Kx − x = − α (αI + K ∗K )−1x = −α zα

zα := (αI + K ∗K )−1x ⇐⇒ (αI + K ∗K )zα = x

Multiplication with zα:

α ∥zα∥2 + ∥Kzα∥2 = (x , zα) ≤ ∥x∥ ∥zα∥ , thus α ∥zα∥ ≤ ∥x∥ . (1)

(αI + K ∗K )−1K ∗Kx − x = −α zα ⇒ ∥(αI + K ∗K )−1K ∗K − I∥ ≤ 1 . (2)

Special case: x = K ∗u ∈ R(K ∗). With (1): (x , zα) = (u,Kzα) ≤ ∥u∥ ∥Kzα∥,
thus (1) has the form:

α ∥zα∥2 + ∥Kzα∥2 ≤ ∥u∥ ∥Kzα∥ , thus ∥Kzα∥ ≤ ∥u∥

thus α∥zα∥2 ≤ ∥u∥2 and thus α∥zα∥ ≤
√
α∥u∥. From (2) we get

∥(αI + K ∗K )−1K ∗Kx − x∥ ≤
√
α ∥u∥ −→ 0 , α→ 0 .

General case x ∈ X : Note that closure
(
R(K ∗)

)
= N (K )⊥ = X , and use

Theorem of Banach-Steinhaus.
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So far: RαKx → x for all x ∈ X and ∥RαKx − x∥ ≤ c
√
α for x ∈ R(K ∗).

Furthermore, ∥Rα∥ ≤ 1√
α

as seen from previous arguments:

zα := Rαu = (αI + K ∗K )−1K ∗u is previous definition for x = K ∗u, thus√
α∥zα∥ ≤ ∥u∥.

Analogously: ∥RαKx − x∥ ≤ c α2/3 for x ∈ R(K ∗K ).

Back to (approximate) solution of Kx ≈ yδ . Set xα,δ := Rαyδ. Then
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Better is a-posteriori choice by discrepancy principle: Choose α such that

∥Kxα,δ − yδ∥ = δ where xα,δ = Rαyδ . (3)

Lemma For δ < ∥yδ∥ there exists a unique α = α(δ) with (3). Furthermore, if
x̂ ∈ R(K ∗) then ∥xα(δ),δ − x̂∥ ≤ c

√
δ.

Remarks concerning Tikhonov’s regularization method:

(a) xα,δ = Rαyδ is the unique minimizer of the Tikhonov functional
J(x) = ∥Kx − yδ∥2 + α∥x∥2.

(b) The order O(δ2/3) is the best possible for the error ∥xα(δ),δ − x̂∥ – even if
x̂ ∈ R

(
(K ∗K )m

)
for any m ≥ 1.

(c) For the discrepancy principle the order O(
√
δ) is the best possible for the

error ∥xα(δ),δ − x̂∥ – even if x̂ ∈ R
(
(K ∗K )m

)
for any m ≥ 1.

(d) In applications (K integral operator) the conditions x̂ ∈ R(K ∗) or
x̂ ∈ R

(
(K ∗K )m

)
are smoothness assumptions on x̂ combined with compatibility

conditions.
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Consider again the equation Kx = yδ. Assume that K ∗ is one-to-one; that is, K
has dense range. Rewrite Kx = yδ as equivalent fixpoint equation in the form
x = x − a K ∗(Kx − yδ) with some parameter a > 0 and iterate:

xm+1,δ = xm,δ − a K ∗(Kxm,δ − yδ), m = 0, 1, 2, . . . ,

with x0,δ = 0.

Then xm,δ = Rmyδ where Rm : Y → X is given by

Rm := a
m−1∑
k=0

(I − a K ∗K )k K ∗ for m = 1, 2, . . . . (4)

(Proof by induction with respect to m.) This is Landweber iteration and is the
gradient method (with step size a > 0) corresponding to the minimization of
J(x) = ∥Kx − yδ∥2.
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Instead of discrepancy principle one uses the following stopping rule. Let r > 1
be fixed with rδ < ∥yδ∥. Let m(δ) ∈ N such that

∥Kxm(δ),δ − yδ∥ ≤ rδ < ∥Kxm,δ − yδ∥ for all m = 0, . . . ,m(δ)− 1 . (5)

Theorem Let 0 < a < 1/∥K∥2. Then limm→∞ Kxm,δ = yδ which implies that
there exists m(δ) with (5). If x̂ = (K ∗K )σ/2z ∈ R

(
(K ∗K )σ/2

)
) for some z ∈ X

and σ > 0 we have the estimate∥∥xm(δ),δ − x̂
∥∥ ≤ c ∥z∥1/(σ+1) δσ/(σ+1) (6)

for some c > 0 independent of δ.

Conjugate gradient method: x0 = 0, p0 = −K ∗yδ.

xm+1 = xm − tm pm , tm =
(Kxm − yδ,Kpm)

∥Kpm∥2 ,

pm+1 = K ∗(Kxm+1 − yδ) + γmpm , γm =
∥K ∗(Kxm+1 − yδ)∥2

∥K ∗(Kxm − yδ)∥2 ,

m = 0, 1, . . .. With the same stopping rule as above the same theorem holds.
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There exist extensions of Tikhonov’s method (iterated Tikhonov’s method)
and the discrepancy principle to extend the order optimality O(δ2/3) and
O(

√
δ), respectively.

There exist heuristic strategies for choosing α, for example the L−method
(plotting α 7→

(
∥Kxα,δ − yδ∥2, ∥xα,δ∥2

)
∈ R2 which has form of an L and

choose left lower corner.)

Tikhonov regularization and Landweber method: Rαyδ and Rmyδ are linear
wrt yδ, cg-method: Rm = Rm(yδ) is non-linear with respect to yδ.

Construction of regularization operators Rα with singular systems
{σj , xj , yj : j ∈ N} of K : X → Y , for example spectral cut-off, iterated
Tikhonov regularization, ν−methods.

Construction of regularization operators Rh by discretization; that is replace
K : X → Y by Kh : Xh → Yh with finite dimensional Xh, Yh.
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Recall the model for the scattering problem:
Total field u is sum of incident field uinc and scattered field us; that is:
u = uinc + us satisfies the Helmholtz equation

∆u + k2n u = 0 in R3 ,

and us satisfies Sommerfeld’s radiation condition (SRC)

∂us(x)
∂r

− ikus(x) = O
(
r−2) , r = |x | → ∞ ,

uniformly with respect to x̂ = x/|x | ∈ S2 (=unit sphere).

Examples for incident fields (satisfy Helmholtz equation for n ≡ 1):

(a) Plane wave of direction θ̂ ∈ S2: uinc(x) = eik θ̂·x , x ∈ R3 .

(b) Spherical wave with source point z ∈ R3 (fundamental solution)

Φ(x , z) :=
exp(ik |x − z|)

4π|x − z|
, x ̸= z .
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∆u + k2nu = 0 in R3 , us := u − uinc satisfies SRC.

For n ∈ L∞(R3) where q := n − 1 has bounded support the solution is
searched for in (local) Sobolev space H2

loc(R3).

Theorem: There exists at most one solution of the direct scattering problem
(uniqueness).
Proof is based on Lemma of Rellich and unique continuation:
Lemma of Rellich: For k > 0 (real valued) and ∆u + k2u = 0 for |x | > R0 it
holds that:

lim
R→∞

∫
|x|=R

|u|2ds = 0 implies u = 0 for |x | > R0 .

Unique Continuation: Let u ∈ H2
loc(R3) satisfy ∆u + k2nu = 0 in R3. If u = 0 on

some open set then u vanishes everywhere.
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Uniqueness of direct problem: Assume u is difference of two solutions. Then
∆u + k2nu = 0 in R3 and u satisfies the SRC. Then:∫

|x|=R

∣∣∣∣∂u
∂r

− iku

∣∣∣∣2ds =

∫
|x|=R

∣∣∣∣∂u
∂r

∣∣∣∣2 + k2|u|2ds + 2k Im

∫
|x|=R

u
∂u
∂r

ds

The left hand side tends to zero by the SRC. Green’s theorem yields∫
|x|=R

u
∂u
∂r

ds =

∫
BR

[
|∇u|2 + u ∆u

]
dx =

∫
BR

[
|∇u|2 − k2n |u|2

]
dx

and this is real valued. Therefore,
∫
|x|=R |u|2ds → 0 as R → ∞.

Rellich’s Lemma and unique continuation imply u = 0 in R3.
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Existence is based on volume potential for fundamental solution Φ.

Theorem: For φ ∈ L2(D) the potential

v(x) =

∫
D
φ(y) Φ(x , y) dy , x ∈ R3 ,

is the only radiating solution v ∈ H2
loc(R3) of ∆v + k2v = −φ in R3.

Rewrite ∆u + k2nu = 0 as ∆u + k2u = −k2qu where q := n − 1, thus also
∆us + k2us = −k2qu, thus by theorem:

u(x)− uinc(x) = us(x) = k2
∫

D
q(y) u(y) Φ(x , y) dy , x ∈ R3 .

Restriction to x ∈ D yields Lippmann-Schwinger integral equation.

Theorem: For every n ∈ L∞(D) such that q := n − 1 is supported in D there
exists a unique solution u ∈ H2

loc(R3) of the direct scattering problem. u|D solves
the Lippmann-Schwinger integral equation.
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Recall Lippmann-Schwinger integral equation

u(x)− uinc(x) = us(x) = k2
∫

D
q(y) u(y) Φ(x , y) dy , x ∈ R3 .

Asymptotic behavior Φ(x , z) = exp(ik|x|)
4π|x| e−ik x̂·z +O(1/|x |2) yields

us(x) =
exp(ik |x |)

4π|x |
u∞(x̂) + O(1/|x |2) , |x | → ∞ ,

uniformly wrt x̂ := x/|x | ∈ S2 with far field pattern

u∞(x̂) = k2
∫

D
q(y) u(y) e−ik x̂·y dy , x̂ ∈ S2 .

For uinc(x) = exp(ik θ̂ · x) we have u∞ = u∞(x̂ , θ̂).
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Inverse scattering problem: Determine (properties of) the contrast
q(x) = n(x)− 1 from the knowledge of u∞(x̂ , θ̂) for all x̂ , θ̂ ∈ S2!

2D-Example: Here x̂ , θ̂ ∈ S1 ≜ (0, 2π)

Which contrast q corresponds to the following far fields u∞(ϕ, θ), ϕ, θ ∈ [0, 2π]?

Re u∞ Im u∞ Re u∞ Im u∞
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Left example:

Theorem of Karp: If u∞(x̂ , θ̂
)
= ψ(x̂ · θ̂) for all x̂ , θ̂ ∈ S2, then q is radially

symmetric; that is, q(x) = f (|x |) for some function f ∈ L∞(R>0). In particular,
the support of q is a ball.

Uniqueness of the inverse scattering problem:

Theorem The far field patterns u∞(x̂ , θ̂) determine n uniquely; that is, if
nj ↔ u∞

j (x̂ , θ̂) for j = 1, 2, then:

u∞
1 (x̂ , θ̂) = u∞

2 (x̂ , θ̂) for all x̂ , θ̂ ∈ S2 =⇒ n1 = n2 .

In R3: Nachman (1988), Novikov (1988), Ramm (1988)

In R2: Bukhgeim (2008)

Drossos Gintides will talk on this topic!
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(a) Linearization, e.g. Born approximation: Recall L-S-eqn:

u(x) = uinc(x) + k2
∫

D
q(y) u(y) Φ(x , y) dy , x ∈ D .

Iteration converges if norm of operator is less than 1. First iteration:

uB(x) = uinc(x) + k2
∫

D
q(y) uinc(y) Φ(x , y) dy , x ∈ R3 ,

us
B(x , θ̂) = k2

∫
D

q(y) uinc(y , θ̂) Φ(x , y) dy , x ∈ R3 ,

u∞
B (x̂ , θ̂) = k2

∫
D

q(y) uinc(y , θ̂) e−ik x̂·y dy

= k2
∫

D
q(y) eik(θ̂−x̂)·y dy = k2 q̂

(
k(x̂ − θ̂)

)
, x̂ , θ̂ ∈ S2.

Determine q from Fourier transform on ball; that is, for
k(x̂ − θ̂) ∈ {z ∈ R3 : |z| ≤ 2k}. Problem is linear and ill-posed!
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(b) Iterative methods to determine contrast function q: Define mapping
T : L∞(D) → L2(S2 × S2), q 7→ u∞. Apply iterative method to solve

T (q) = f for q where f = f (x̂ , θ̂) is given (measured) far field pattern.

Possible methods: Newton-type methods, gradient-type methods, second order
methods.

Derivative: T ′(q)h = v∞ where v is radiating solution of
∆v + k2(1 + q)v = −k2hu. Derivative T ′(q) is compact and one-to-one!

Advantages: Very general, accurate, incorporation of a priori information
possible.

Disadvantages: “Expensive”, only local convergence is expected, no rigorous
convergence result known.
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(c) Sampling Methods. They determine only support D of q. Choose set of
sampling objects, e.g. points z ∈ R3, and construct binary criterium which uses
only the data u∞ to decide whether or not z belongs to D.

Members of this
group: Linear Sampling Method by Colton/Kirsch, Factorization Method by Kirsch
(both use points z ∈ R3 as sampling objects), Probe Method by Ikehata (curves),
No-Response-Test by Luke/Potthast (domains), Singular Sources Method by
Potthast (points, in combination with Point Source Meth.)

We discuss only Factorization Method.

Advantages: Fast, avoids computation of direct problems, no a priori information
on type of boundary condition or number of components necessary,
mathematically elegant and rigorous, gives characteristic function of
D = supp(n − 1) explicitely.

Disadvantages: Needs u∞(x̂ , θ̂) for many (in theory: all) x̂ , θ̂, no incorporation of
a-priory information possible, very sensitive to noise.
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Factorization Method determines only support of q := n − 1! Values of
q ∈ L∞(R3) do not have to be known in advance.

Define far field operator F : L2(S2) → L2(S2) by

(Fg)(x̂) =

∫
S2

u∞(x̂ , θ̂) g(θ̂) ds(θ̂) , x̂ ∈ S2 .

Properties of F :
F is compact.
If q is real-valued then F is normal; that is, F∗F = F F∗, and even:
S := I + ik

2π F is unitary (=scattering matrix).
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Recall:

∆u + k2(1 + q)u = 0 and ∆uinc + k2uinc = 0 where uinc(x) = eik θ̂·x .
The scattered field satisfies

∆us + k2(1 + q)us = −k2q uinc in R3 .

Theorem: F : L2(S2) → L2(S2) has factorization F = H∗TH where
H : L2(S2) → L2(D) is defined as

(Hg)(x) =

∫
S2

uinc(x , θ̂) g(θ̂) ds(θ̂) =

∫
S2

eikx·θ̂ g(θ̂) ds(θ̂) , x ∈ D ,

and T : L2(D) → L2(D) is defined as Tf = k2q(f + v) where v is the radiating
solution of

∆v + k2(1 + q)v = −k2q f in R3 .
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This is factorization, what’s the method?

Theorem: Let R3 \ D be connected. For any z ∈ R3 define ϕz ∈ L2(S2) by

ϕz(x̂) := e−ik x̂·z , x̂ ∈ S2 .

Then z ∈ D if, and only if, ϕz ∈ R(H∗).

Proof: (H∗φ)(x̂) =
∫

D
φ(y) e−ik x̂·y dy

?
= e−ik x̂·z , x̂ ∈ S2 .

This is equivalent to (because complement of D is connected)

(∗)
∫

D
φ(y) Φ(x , y) dy = Φ(x , z) , x /∈ (D ∪ {z}) .

z ∈ D: Choose Φ̃ ∈ C∞(R3) with Φ̃(x) = Φ(x , z) outside of D and define φ
by

∫
D φ(y) Φ(·, y) dy = Φ̃ in R3; that is, −φ = ∆Φ̃ + k2Φ̃.

z /∈ D: (∗) can not have a solution! (Left hand side bounded, right hand side
unbounded for x → z.)
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Recall: F = H∗ T H and z ∈ D ⇐⇒ ϕz ∈ R(H∗) .

Goal: Express range R(H∗) by known operator F !

General situation for Hilbert spaces X ,Y :

X X

Y Y-

-
?

6

H H∗

T

F

Theorem: If T : X → X is selfadjoint and coercive; that is,

⟨ψ,Tφ⟩ = ⟨Tψ,φ⟩ , ⟨φ,Tφ⟩ ≥ c∥φ∥2
X for all ψ,φ ∈ X ,

then R(H∗) = R(F 1/2) .
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Theorem: Let F = H∗
1 T1H1 = H∗

2 T2H2 such that Tj : Xj → Xj is coercive in the
sense that ∣∣⟨Tjφ,φ⟩

∣∣ ≥ c∥φ∥2
Xj

for all φ ∈ R(Hj) , j = 1, 2 .

Then R(H∗
1 ) = R(H∗

2 ).

The proof follows from inf–condition (Kirsch) or a theorem of Nachman,
Pävärinta, Teirilä: Let H = H1 or H2. Then

ϕ ∈ R(H∗) ⇐⇒ ∃c > 0 : |⟨ϕ, ψ⟩Y |2 ≤ c|⟨Fψ,ψ⟩Y | ∀ ψ ∈ Y

⇐⇒ inf
{
|⟨Fψ,ψ⟩Y | : ⟨ϕ, ψ⟩Y = 1

}
> 0

⇐⇒ ϕ ⊥ {ψ : ⟨Fψ,ψ⟩Y = 0}
(
= N (H)

)
and

sup
{
|⟨ϕ, ψ⟩Y | : |⟨Fψ,ψ⟩Y | = 1

}
< ∞
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Theorem: Let F = H∗T H : Y → Y be one-to-one and such that I + irF is
unitary for some r > 0. Furthermore, let T : X → X be comp. perturb. of s.a.
and coercive operator and Im⟨φ,Tφ⟩ ≠ 0 for all φ ∈ closureR(H) with φ ̸= 0.

Then R(H∗) = R
(
|F |1/2

)
.

Idea of proof: I + irF unitary implies F normal and thus ∃ ONS with
Fψj = λjψj . Then F = H∗T H = |F |1/2S|F |1/2 where

|F |1/2ψ =
∑

j

√
|λj | ⟨ψ,ψj⟩Y ψj ,

Sψ =
∑

j

λj

|λj |
⟨ψ,ψj⟩Y ψj .

|⟨Sψ,ψ⟩| =
∣∣∣∣∑j

λj

|λj |
∣∣⟨ψ,ψj⟩Y

∣∣2∣∣∣∣
≥ c∥ψ∥2

Y
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Let k2 be no int. transm. eigenvalue, q real, q(x) ≥ q0 on D.

Recall: F = H∗T H and F is one-to-one and I + ik
2πF is unitary and

T : L2(D) → L2(D), f 7→ k2q(f + v) is compact perturbation of coercive
operator and Im⟨φ,Tφ⟩ > 0 for all φ ∈ closureR(H), φ ̸= 0. Then∣∣⟨Tφ,φ⟩∣∣ ≥ c∥φ∥2

L2(D). Thus R(H∗) = R
(
|F |1/2

)
.

Combination of previous theorems:
Theorem: Let again ϕz(x̂) = exp(−ik x̂ · z), x̂ ∈ S2.

Under above assumptions: z ∈ D ⇐⇒ ϕz ∈ R
(
|F |1/2)

Let {λj : j ∈ N} ⊂ C be eigenvalues of (normal!) operator F with normalized
eigenfunctions ψj ∈ L2(S2) for j ∈ N. Then:

z ∈ D ⇐⇒
∑
j∈N

|⟨ϕz , ψj⟩L2 |2

|λj |
<∞ ⇐⇒

[∑
j∈N

|⟨ϕz , ψj⟩L2 |2

|λj |

]−1

> 0 .
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operator and Im⟨φ,Tφ⟩ > 0 for all φ ∈ closureR(H), φ ̸= 0. Then∣∣⟨Tφ,φ⟩∣∣ ≥ c∥φ∥2

L2(D). Thus R(H∗) = R
(
|F |1/2

)
.

Combination of previous theorems:
Theorem: Let again ϕz(x̂) = exp(−ik x̂ · z), x̂ ∈ S2.

Under above assumptions: z ∈ D ⇐⇒ ϕz ∈ R
(
|F |1/2)

Let {λj : j ∈ N} ⊂ C be eigenvalues of (normal!) operator F with normalized
eigenfunctions ψj ∈ L2(S2) for j ∈ N. Then:

z ∈ D ⇐⇒
∑
j∈N

|⟨ϕz , ψj⟩L2 |2

|λj |
<∞ ⇐⇒

[∑
j∈N

|⟨ϕz , ψj⟩L2 |2

|λj |

]−1

> 0 .
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Now q ∈ L∞(R3) complex valued, Im q ≥ 0. Still F = H∗TH but not
normal anymore. Define

ReF =
1
2
(F + F∗) = H∗(ReT )H

ImF =
1
2i
(F − F∗) = H∗(ImT )H

F# =def |ReF | + ImF

Then F# = H∗T̃H with coercive T̃ .

Theorem: z ∈ D ⇐⇒ ϕz ∈ R(F 1/2
# )

Let {λj : j ∈ N} ⊂ R be eigenvalues of (selfadjoint!) operator F# with
normalized eigenfunctions ψj ∈ L2(S2) for j ∈ N. Then:

z ∈ D ⇐⇒
∑
j∈N

|⟨ϕz , ψj⟩L2 |2

λj
<∞ ⇐⇒

[∑
j∈N

|⟨ϕz , ψj⟩L2 |2

λj

]−1

> 0 .
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Factorization method needs only far field patterns u∞(x̂ , θ̂) for all x̂ , θ̂ ∈ S2. If
these are available, the method can be implemented.

However, the method has to be justified for all models of wave propagation.

Reduced data: A ⊂ S2 (relative) open,data: u∞(x̂ , θ̂) for x̂ , θ̂ ∈ A (i.e.
forward scattering): FM justified by using projection onto L2(A).
Point source incidence: uinc(x) = Φ(x , z) for z ∈ Γ.
Data: scattered fields us(x , z) for x , z ∈ Γ. Factorization: F = H∗TH, no
range identity known, thus FM not justified!
“Wrong” point source incidence uinc(x) = Φ(x , z) for z ∈ Γ: FM justified. If
Γ surrounds D then us

wrong(x , z) are computable from us(x , z).
Obstacles D with boundary conditions:

Scattering by an arc (in R2) or screen (in R3): FM justified.
Scattering by impenetrable obstacle with Dirchlet-, Neumann-, impedance-,
conductive boundary conditions: FM justified.
Mixed boundary conditions (D = D1 ∪ D2, Dirichlet bc on ∂D1, Neumann bc
on ∂D2) not justified!
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Other models of wave propagation:
Anisotropic media, e.g. ∇ · (A∇u) + k2u = 0
Electromagnetic wave propagation, modelled by Maxwell’s equations
Elastic wave propagation, modelled by Navier’s equations
Stokes problem
Hybrid model: elastic core in fluid

Nonlinear Helmholtz equation

Impedance tomography

Periodic structures

Wave guides

36 June 2023 Andreas Kirsch, Athens: CRC 1173 Wave phenomena



Recall:

z ∈ D ⇐⇒
∑
j∈N

|⟨ϕz , ψj⟩L2 |2

|λj |
< ∞

⇐⇒ w(z) =
[∑

j∈N

|⟨ϕz , ψj⟩L2 |2

|λj |

]−1

> 0 .

Therefore, sign(w) is the characteristic function of D!

The following examples show plots of

wN(z) =

[ N∑
j=1

|⟨ϕz , ψj⟩|2

|λj |

]−1

, z ∈ R2 :

for N = 32 or N = 36, respectively.
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Dirichlet boundary conditions:
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Scattering by an open arc:
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Real data:
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3D-Example (joint work with A. Kleefeld): Scattering under conductive
transmission conitions

∆u + k2u = 0 in R3 \ ∂D ,

u+ = u− ,
∂u+

∂ν
− ∂u−

∂ν
= λ u on ∂D .
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Numerical Simulations



Thank you for your attention!
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