A dimension-reduction method for the numerical solution of various Cauchy problems in R^{2}

Leonidas Mindrinos

Agricultural University of Athens

Summer School MATH @ NTUA
Monday, June $26^{\text {th }}$, 2023

Outline

- Introduction
- The two-step method
- Direct and inverse problems:
- Elastodynamic problem
- Wave equation
- Heat equation
- Numerical implementation / results

Introduction

Example: Parabolic PDE

$$
\begin{aligned}
\frac{\partial u}{\partial t}(x, t)-\Delta u(x, t) & =0, & & x \in D \subset \mathbb{R}^{2}, t>0, \\
u(x, 0) & =0, & & x \in D \\
u(x, t) & =f(x, t), & & x \in \Gamma, t>0
\end{aligned}
$$

Introduction

Example: Parabolic PDE

$$
\begin{aligned}
\frac{\partial u}{\partial t}(x, t)-\Delta u(x, t) & =0, & & x \in D \subset \mathbb{R}^{2}, t>0 \\
u(x, 0) & =0, & & x \in D \\
u(x, t) & =f(x, t), & & x \in \Gamma, t>0
\end{aligned}
$$

Methods

single-step Direct application of numerical scheme (FDM, integral equation methods).

Introduction

Example: Parabolic PDE

$$
\begin{aligned}
\frac{\partial u}{\partial t}(x, t)-\Delta u(x, t) & =0, & & x \in D \subset \mathbb{R}^{2}, t>0, \\
u(x, 0) & =0, & & x \in D, \\
u(x, t) & =f(x, t), & & x \in \Gamma, t>0,
\end{aligned}
$$

Methods
single-step Direct application of numerical scheme (FDM, integral equation methods).
two-step Split and threat differently time and space variables.

Introduction

Single-step method

We define the potentials

$$
\begin{aligned}
\left(\mathcal{S}_{t} \phi\right)(x, t) & =\int_{0}^{t} \int_{\Gamma} \Phi(x-y, t-\tau) \phi(y, \tau) d s(y) d \tau \\
\left(\mathcal{D}_{t} \phi\right)(x, t) & =\int_{0}^{t} \int_{\Gamma} \frac{\partial}{\partial \nu(y)} \Phi(x-y, t-\tau) \phi(y, \tau) d s(y) d \tau
\end{aligned}
$$

for the fundamental solution Φ of the heat equation.

Introduction

Single-step method

We define the potentials

$$
\begin{aligned}
\left(\mathcal{S}_{t} \phi\right)(x, t) & =\int_{0}^{t} \int_{\Gamma} \Phi(x-y, t-\tau) \phi(y, \tau) d s(y) d \tau \\
\left(\mathcal{D}_{t} \phi\right)(x, t) & =\int_{0}^{t} \int_{\Gamma} \frac{\partial}{\partial \nu(y)} \Phi(x-y, t-\tau) \phi(y, \tau) d s(y) d \tau
\end{aligned}
$$

for the fundamental solution Φ of the heat equation.
The solution is represented by:

$$
u(x, t)=\left(\mathcal{S}_{t} \partial_{\nu} u\right)(x, t)-\left(\mathcal{D}_{t} u\right)(x, t) \quad \text { (direct method) },
$$

or by

$$
u(x, t)=\left(\mathcal{S}_{t} \phi\right)(x, t) \quad \text { (indirect method) } .
$$

Introduction

Two-step methods

- Finite Difference Method (FDM) together with Boundary Integral Equations (BIE) method - Rothe method
- Integral Transform (LT) together with BIE method

The two-step method

Rothe method

Step 1: Apply FDM w.r.t. time:

$$
\frac{u_{n}(x)-u_{n-1}(x)}{h}=\Delta u_{n}(x), \quad \text { in } D
$$

where $u_{n}(x)=u\left(t_{n}, x\right)$, for the grid points $t_{n}=(n+1) h$, where $h=T / N$, for $n=0,1, \ldots N-1$.

The two-step method

Rothe method

Step 1: Apply FDM w.r.t. time:

$$
\frac{u_{n}(x)-u_{n-1}(x)}{h}=\Delta u_{n}(x), \quad \text { in } D
$$

where $u_{n}(x)=u\left(t_{n}, x\right)$, for the grid points $t_{n}=(n+1) h$, where $h=T / N$, for $n=0,1, \ldots N-1$.

Step 2: Use BIE to derive

$$
u_{n}(x)=\frac{1}{\pi} \int_{\Gamma} \frac{\partial}{\partial \nu(y)} \Phi(x-y) \phi_{n}(y) d s(y)+\frac{1}{2 \pi h} \int_{D} \Phi(x-y) u_{n-1}(y) d y
$$

The two-step method

Proposed method - Preliminaries

Normalized Laguerre polynomials

$$
\begin{aligned}
& \qquad L_{n}(t)=\frac{1}{n!} e^{t} \frac{d^{n}}{d t^{n}}\left(t^{n} e^{-t}\right), \quad n=0,1, \ldots \\
& \text { e.g. } L_{0}(t)=1, \quad L_{1}(t)=1-t
\end{aligned}
$$

The two-step method

Proposed method - Preliminaries
Normalized Laguerre polynomials

$$
L_{n}(t)=\frac{1}{n!} e^{t} \frac{d^{n}}{d t^{n}}\left(t^{n} e^{-t}\right), \quad n=0,1, \ldots
$$

e.g. $L_{0}(t)=1, \quad L_{1}(t)=1-t$.

Properties

- $L_{n}^{\prime}=-\sum_{m=0}^{n-1} L_{m}, \quad n=1,2, \ldots$
- $L_{n}(0)=1, \quad L_{n}^{\prime}(0)=-n, \quad n=0,1, \ldots$
- $\int_{0}^{\infty} e^{-t} L_{n}(t) L_{m}(t) d t=0, \quad n \neq m$

The two-step method

Preliminaries

Let $u \in C^{2}$ bounded, we consider the expansion

$$
u(t)=\sum_{n=0}^{\infty} u_{n} L_{n}(t)
$$

where

$$
u_{n}=\int_{0}^{\infty} e^{-t} u(t) L_{n}(t) d t, \quad n=0,1, \ldots
$$

The two-step method

Preliminaries

Let $u \in C^{2}$ bounded, we consider the expansion

$$
u(x, t)=\kappa \sum_{n=0}^{\infty} u_{n}(x) L_{n}(\kappa t)
$$

where

$$
u_{n}(x)=\int_{0}^{\infty} e^{-\kappa t} u(x, t) L_{n}(\kappa t) d t, \quad n=0,1, \ldots
$$

The two-step method

Proposed method

Step 1: Apply Laguerre transform w.r.t. time:

$$
\int_{0}^{\infty} e^{-\kappa t} L_{n}(\kappa t)\left(\Delta u(x, t)-\frac{\partial u}{\partial t}(x, t)\right) d t=\Delta u_{n}(x)-\kappa \sum_{m=0}^{n} u_{m}(x)+\underline{u}(x, \theta),
$$

for $n=0,1, \ldots$ Rewrite it as:

$$
\Delta u_{n}(x)-\kappa u_{n}(x)=\kappa \sum_{m=0}^{n-1} u_{m}(x)
$$

The two-step method

Proposed method

Step 1: Apply Laguerre transform w.r.t. time:

$$
\int_{0}^{\infty} e^{-\kappa t} L_{n}(\kappa t)\left(\Delta u(x, t)-\frac{\partial u}{\partial t}(x, t)\right) d t=\Delta u_{n}(x)-\kappa \sum_{m=0}^{n} u_{m}(x)+u(x, \theta),
$$

for $n=0,1, \ldots$ Rewrite it as:

$$
\Delta u_{n}(x)-\kappa u_{n}(x)=\kappa \sum_{m=0}^{n-1} u_{m}(x)
$$

Step 2: Use BIE to derive

$$
u_{n}(x)=\frac{1}{\pi} \sum_{m=0}^{n} \int_{\Gamma} \Phi_{n-m}(x-y) u_{m}(y) d s(y)
$$

The two-step method

- Initial boundary value problem:

$$
\frac{\partial^{\alpha}}{\partial t^{\alpha}} u(x, t)=\mathcal{D}_{x} u(x, t), \quad \mathbb{R}^{2} \supset D \times(0, \infty)
$$

for $\alpha=1,2$, together with IC and BC.

The two-step method

- Initial boundary value problem:

$$
\frac{\partial^{\alpha}}{\partial t^{\alpha}} u(x, t)=\mathcal{D}_{x} u(x, t), \quad \mathbb{R}^{2} \supset D \times(0, \infty)
$$

for $\alpha=1,2$, together with IC and BC.

- Time-discretization:

$$
u(x, t)=\kappa \sum_{n=0}^{\infty} u_{n}(x) L_{n}(\kappa t)
$$

resulting to a sequence of stationary problems.

The two-step method

- Initial boundary value problem:

$$
\frac{\partial^{\alpha}}{\partial t^{\alpha}} u(x, t)=\mathcal{D}_{x} u(x, t), \quad \mathbb{R}^{2} \supset D \times(0, \infty)
$$

for $\alpha=1,2$, together with IC and BC.

- Time-discretization:

$$
u(x, t)=\kappa \sum_{n=0}^{\infty} u_{n}(x) L_{n}(\kappa t)
$$

resulting to a sequence of stationary problems.

- Boundary integral equation method:

$$
u_{n}(x)=\sum_{m=0}^{n}\left(\mathcal{S}_{n-m} \phi_{m}\right)(x)
$$

for the unknown densities ϕ_{m}, defined on Γ.

The two-step method

Advantages

- Dimension reduction
- Avoid domain discretization and volume integrals
- Applicable in various cases
- Exponential convergence for exact data

The two-step method

Advantages

- Dimension reduction
- Avoid domain discretization and volume integrals
- Applicable in various cases
- Exponential convergence for exact data

Drawbacks

- The fundamental sequence needs special treatment
- Working with singular integrals
- Shares the disadvantages of the BIE method (smooth boundary, good initial guess)

Hyperbolic case 1: the direct problem

Let $D \subset \mathbb{R}^{2}$ be bounded with C^{2}-smooth boundary Γ.
We consider the initial boundary value problem:

$$
\begin{align*}
\frac{\partial^{2} u}{\partial t^{2}}(x, t)-\Delta^{*} u(x, t) & =0, & & x \in \mathbb{R}^{2} \backslash D, t>0 \\
u(x, 0)=\frac{\partial u}{\partial t}(x, 0) & =0, & & x \in \mathbb{R}^{2} \backslash D \tag{1}\\
u(x, t) & =f(x, t), & & x \in \Gamma, t>0
\end{align*}
$$

where

$$
\Delta^{*} u:=c_{s}^{2} \Delta u+\left(c_{p}^{2}-c_{s}^{2}\right) \nabla \nabla \cdot u
$$

for the velocities $c_{s}=\sqrt{\mu / \rho}, c_{\rho}=\sqrt{(\lambda+2 \mu) / \rho}$, where ρ is the density, and λ and μ are the Lamé constants.

Hyperbolic case 1: the direct problem

The boundary function f satisfies

$$
f(x, 0)=\frac{\partial f}{\partial t}(x, 0)=0, \quad x \in \Gamma
$$

We impose the RC

$$
u(x, t) \rightarrow 0, \quad \text { as } \quad|x| \rightarrow \infty
$$

uniformly to all directions $\frac{x}{|x|}$, and all $t \in[0, \infty)$.

Hyperbolic case 1: the direct problem

The boundary function f satisfies

$$
f(x, 0)=\frac{\partial f}{\partial t}(x, 0)=0, \quad x \in \Gamma
$$

We impose the RC

$$
u(x, t) \rightarrow 0, \quad \text { as } \quad|x| \rightarrow \infty
$$

uniformly to all directions $\frac{x}{|x|}$, and all $t \in[0, \infty)$.
This problem is well-posed [V. Kupradze, 1979].

Hyperbolic case 1: time-discretization

We consider the expansion

$$
u(x, t)=\kappa \sum_{n=0}^{\infty} u_{n}(x) L_{n}(\kappa t)
$$

with Fourier-Laguerre coefficients

$$
u_{n}(x)=\int_{0}^{\infty} e^{-\kappa t} L_{n}(\kappa t) u(x, t) d t, \quad n \in \mathbb{N}_{0}
$$

Hyperbolic case 1: time-discretization

We consider the expansion

$$
u(x, t)=\kappa \sum_{n=0}^{\infty} u_{n}(x) L_{n}(\kappa t)
$$

with Fourier-Laguerre coefficients

$$
u_{n}(x)=\int_{0}^{\infty} e^{-\kappa t} L_{n}(\kappa t) u(x, t) d t, \quad n \in \mathbb{N}_{0}
$$

Applying the Laguerre transform, we obtain

$$
\begin{align*}
\Delta^{*} u_{n}(x)-\kappa^{2} u_{n}(x) & =\sum_{m=0}^{n-1} \beta_{n-m} u_{m}(x), & x & \in \mathbb{R}^{2} \backslash D, \tag{2}\\
u_{n}(x) & =f_{n}(x), & x & \in \Gamma, \\
u_{n}(x) & \rightarrow 0, & |x| & \rightarrow \infty,
\end{align*}
$$

for $n \in \mathbb{N}_{0}$, and $\beta_{n}=\kappa^{2}(n+1)$.

Hyperbolic case 1: time-discretization

Theorem

The sequence of stationary problems (2) has at most one solution.

Hyperbolic case 1: time-discretization

Theorem

The sequence of stationary problems (2) has at most one solution.

Theorem

A sufficiently smooth function of the form

$$
u(x, t)=\kappa \sum_{n=0}^{\infty} u_{n}(x) L_{n}(\kappa t)
$$

is the solution of the initial BVP iff its Fourier-Laguerre coefficients $u_{n}, n \in \mathbb{N}_{0}$, solve the system (2).

Hyperbolic case 1: BIE

We introduce the sequence of functions

$$
\Phi_{n}(\gamma, r)=K_{0}(\gamma r) v_{n}(\gamma, r)+K_{1}(\gamma r) w_{n}(\gamma, r), \quad n=0, \ldots, N-1,
$$

where K_{0} and K_{1} are the modified Hankel functions of order zero and one, respectively. The polynomials are given by

$$
v_{n}(\gamma, r)=\sum_{m=0}^{\left[\frac{n}{2}\right]} a_{n, 2 m}(\gamma) r^{2 m}, \quad w_{n}(\gamma, r)=\sum_{m=0}^{\left[\frac{n-1}{2}\right]} a_{n, 2 m+1}(\gamma) r^{2 m+1}
$$

where the coefficients $a_{n, m}$ satisfy the recurrence relations

$$
\begin{aligned}
& a_{n, 0}(\gamma)=1, \quad n=0,1, \ldots, N-1, \\
& a_{n, n}(\gamma)=-\frac{\gamma}{n} a_{n-1, n-1}(\gamma), \quad n=1,2, \ldots, N-1,
\end{aligned}
$$

and

$$
a_{n, m}(\gamma)=\frac{1}{2 \gamma m}\left\{4\left[\frac{m+1}{2}\right]^{2} a_{n, m+1}(\gamma)-\gamma^{2} \sum_{k=m-1}^{n-1}(n-k+1) a_{k, m-1}(\gamma)\right\},
$$

for $m=n-1, \ldots, 1$.

Hyperbolic case 1: BIE

Let

$$
J(x)=\frac{x x^{\top}}{|x|^{2}}, \quad x \in \mathbb{R}^{2} \backslash\{0\}
$$

Then, the sequence of matrices

$$
E_{n}(x, y)=\Phi_{1, n}(|x-y|) I+\Phi_{2, n}(|x-y|) J(x-y)
$$

are fundamental solutions, with

$$
\begin{aligned}
\Phi_{\ell, n}(r)= & \frac{(-\ell)^{\ell-1}}{\kappa^{2} r^{2}} \sum_{k=-2}^{2} \chi_{k, n}\left(\Phi_{n+k}\left(\frac{\kappa}{c_{s}}, r\right)-\Phi_{n+k}\left(\frac{\kappa}{c_{p}}, r\right)\right) \\
& +\frac{(-1)^{\ell-1}}{C_{p}^{2}} \Phi_{n}\left(\frac{\kappa}{c_{p}}, r\right)+\frac{\ell-1}{C_{s}^{2}} \Phi_{n}\left(\frac{\kappa}{c_{s}}, r\right), \quad \ell=1,2 .
\end{aligned}
$$

Here, $\chi_{-2, n}=n(n-1), \chi_{-1, n}=-4 n^{2}, \chi_{0, n}=2\left(3 n^{2}+3 n+1\right)$, $\chi_{1, n}=-4(n+1)^{2}$ and $\chi_{2, n}=(n+1)(n+2)$.

Hyperbolic case 1: BIE

We consider a sequence of single-layer potentials

$$
U_{n}(x)=\frac{1}{2 \pi} \sum_{m=0}^{n} \int_{\Gamma} E_{n-m}(x, y) \phi_{m}(y) d s(y), \quad x \in \mathbb{R}^{2} \backslash D
$$

for the unknown densities $\phi_{m} \in C(\Gamma)$.

Hyperbolic case 1: BIE

We consider a sequence of single-layer potentials

$$
U_{n}(x)=\frac{1}{2 \pi} \sum_{m=0}^{n} \int_{\Gamma} E_{n-m}(x, y) \phi_{m}(y) d s(y), \quad x \in \mathbb{R}^{2} \backslash D,
$$

for the unknown densities $\phi_{m} \in C(\Gamma)$.

Theorem

The sequence of single-layer potentials is a solution of (2) provided that their densities satisfy
$\frac{1}{2 \pi} \int_{\Gamma} E_{0}(x, y) \phi_{n}(y) d s(y)=f_{n}(x)-\frac{1}{2 \pi} \sum_{m=0}^{n-1} \int_{\Gamma} E_{n-m}(x, y) \phi_{m}(y) d s(y), \quad x \in \Gamma$.

Hyperbolic case 1: BIE

Theorem

For any sequence $f_{n} \in C^{1, \alpha}(\Gamma)$, the system of BIE admits a unique solution $\phi_{n} \in C^{0, \alpha}(\Gamma)$.

Proof.

The proof is by induction. For $n=0$, the integral equation

$$
\frac{1}{2 \pi} \int_{\Gamma} E_{0}(x, y) \phi_{0}(y) d s(y)=f_{0}(x), \quad x \in \Gamma
$$

has a unique solution $\phi_{0} \in C^{0, \alpha}(\Gamma)[R$. Kress, 2014].

Hyperbolic case 1: quadrature rules

We consider the parametrization

$$
\Gamma=\left\{x(s)=\left(x_{1}(s), x_{2}(s)\right): 0 \leq s \leq 2 \pi\right\}
$$

where $x: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is C^{1} and 2π-periodic with $\left|x^{\prime}(s)\right|>0, \forall s$.

Hyperbolic case 1: quadrature rules

We consider the parametrization

$$
\Gamma=\left\{x(s)=\left(x_{1}(s), x_{2}(s)\right): 0 \leq s \leq 2 \pi\right\}
$$

where $x: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is C^{1} and 2π-periodic with $\left|x^{\prime}(s)\right|>0, \forall s$.
Then, we obtain

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} H_{0}(s, \tau) \psi_{n}(\tau) d \tau \\
& \quad=f_{n}(x(s))-\frac{1}{2 \pi} \sum_{m=0}^{n-1} \int_{0}^{2 \pi} H_{n-m}(s, \tau) \psi_{m}(\tau) d \tau, \quad 0 \leq s \leq 2 \pi
\end{aligned}
$$

Here, $\psi_{n}(s):=\left|x^{\prime}(s)\right| \phi_{n}(x(s))$, and $H_{n}(s, \tau):=E_{n}(x(s), x(\tau))$.

Hyperbolic case 1: quadrature rules

The kernels H_{n} are decomposed as

$$
H_{n}(s, \tau)=H_{n}^{1}(s, \tau) \ln \left(\frac{4}{e} \sin ^{2} \frac{s-\tau}{2}\right)+H_{n}^{2}(s, \tau)
$$

for some analytic functions H_{n}^{1} and H_{n}^{2}.

Hyperbolic case 1: quadrature rules

The kernels H_{n} are decomposed as

$$
H_{n}(s, \tau)=H_{n}^{1}(s, \tau) \ln \left(\frac{4}{e} \sin ^{2} \frac{s-\tau}{2}\right)+H_{n}^{2}(s, \tau)
$$

for some analytic functions H_{n}^{1} and H_{n}^{2}.
We approximate [R. Kress, 2014]

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\tau) \ln \left(\frac{4}{e} \sin ^{2} \frac{s_{j}-\tau}{2}\right) d \tau & \approx \sum_{k=0}^{2 M-1} R_{|j-k|} f\left(s_{k}\right), \\
\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\tau) d \tau & \approx \frac{1}{2 M} \sum_{k=0}^{2 M-1} f\left(s_{k}\right)
\end{aligned}
$$

with the weights

$$
R_{j}:=-\frac{1}{2 M}\left\{1-2 \sum_{m=1}^{M-1} \frac{1}{m} \cos \frac{m j \pi}{M}+\frac{(-1)^{j}}{M}\right\}, \quad j=0, \ldots, 2 M-1 .
$$

Hyperbolic case 1: collocation method

We solve

$$
\sum_{k=0}^{2 M-1}\left\{R_{|j-k|} H_{0}^{1}\left(s_{j}, s_{k}\right)+\frac{1}{2 M} H_{0}^{2}\left(s_{j}, s_{k}\right)\right\} \psi_{n, M}\left(s_{k}\right)=G_{n, M}\left(s_{j}\right)
$$

for $j=0, \ldots, 2 M-1$, where

$$
G_{n, M}\left(s_{j}\right)=g_{n}\left(s_{j}\right)-\sum_{m=0}^{n-1} \sum_{k=0}^{2 M-1}\left\{R_{|j-k|} H_{n-m}^{1}\left(s_{j}, s_{k}\right)+\frac{1}{2 M} H_{n-m}^{2}\left(s_{j}, s_{k}\right)\right\} \psi_{m, M}\left(s_{k}\right) .
$$

Hyperbolic case 1: collocation method

We solve

$$
\sum_{k=0}^{2 M-1}\left\{R_{|j-k|} H_{0}^{1}\left(s_{j}, s_{k}\right)+\frac{1}{2 M} H_{0}^{2}\left(s_{j}, s_{k}\right)\right\} \psi_{n, M}\left(s_{k}\right)=G_{n, M}\left(s_{j}\right)
$$

for $j=0, \ldots, 2 M-1$, where

$$
G_{n, M}\left(s_{j}\right)=g_{n}\left(s_{j}\right)-\sum_{m=0}^{n-1} \sum_{k=0}^{2 M-1}\left\{R_{|j-k|} H_{n-m}^{1}\left(s_{j}, s_{k}\right)+\frac{1}{2 M} H_{n-m}^{2}\left(s_{j}, s_{k}\right)\right\} \psi_{m, M}\left(s_{k}\right) .
$$

For analytic boundary values, we get

$$
\left\|\psi_{n}-\psi_{n, M}\right\|_{\infty} \leq C_{n} e^{-\sigma M}
$$

for positive constants C_{n} and σ.

Hyperbolic case 1: collocation method

Given the approximate solution $\psi_{n, M}$, we compute the coefficients

$$
\tilde{u}_{n, M}(x)=\frac{1}{2 M} \sum_{m=0}^{n} \sum_{k=0}^{2 M-1} E_{n-m}\left(x, x\left(s_{k}\right)\right) \psi_{m, N}\left(s_{k}\right) .
$$

and then we obtain

$$
u_{N, M}(x, t)=\kappa \sum_{n=0}^{N-1} \tilde{u}_{n, M}(x) L_{n}(\kappa t), \quad x \in \mathbb{R}^{2} \backslash D .
$$

Hyperbolic case 1: numerical results

Example 1: We set $\lambda=2, \mu=1$ and $\rho=1$.

We choose a source point $z \in D$, and we define

$$
f_{n}(x)=\left[E_{n}(x, z)\right]_{1}, \quad x \in \Gamma .
$$

Then, the field
$u_{n}^{e x}(y):=\left[E_{n}(y, z)\right]_{1}, \quad y \in \mathbb{R}^{2} \backslash D$,
solves the stationary problem.

Hyperbolic case 1: numerical results

M	$\left(\tilde{u}_{0, M}\right)_{1}(y)$	$\left(\tilde{u}_{1, M}\right)_{1}(y)$	$\left(\tilde{u}_{2, M}\right)_{1}(y)$			
8	0.293581559232	-0.084483725080	-0.146079079028			
16	0.284988364785	-0.092525310787	-0.155666923858			
32	0.285503199323	-0.092138738384	-0.155404881866			
64	0.285503741272	-0.092138337605	-0.155404627504			
0.285503741272					-0.092138337605	-0.155404627504

Table: The first component of the computed and exact (blue) solutions for $\kappa=1$, at the measurement point $y=(1.5,1)$.

Hyperbolic case 1: numerical results

M	$\left(\tilde{u}_{0, M}\right)_{2}(y)$	$\left(\tilde{u}_{1, M}\right)_{2}(y)$	$\left(\tilde{u}_{2, M}\right)_{2}(y)$			
8	0.081036497084	0.028667287783	-0.011013685642			
16	0.071649152048	0.017647071803	-0.021814816353			
32	0.071756738147	0.017837149908	-0.021648258690			
64	0.071756880072	0.017837482038	-0.021647898034			
0.071756880072					0.017837482039	-0.021647898033

Table: The second component of the computed and exact (blue) solutions for $\kappa=1$, at the measurement point $y=(1.5,1)$.

Hyperbolic case 1: numerical results

Figure: The L^{2}-norm of the difference between the computed and the exact solutions, in semi-logarithmic scale.

Hyperbolic case 1: numerical results

Example 2: We use the setup of the 1st example. We consider the spatial independent boundary function

$$
f(x, t)=f(t)\binom{1}{1}, \quad \text { for } \quad f(t)=\frac{t^{2}}{4} e^{-t+2}
$$

which admits the expansion

$$
f(t)=\frac{\kappa e}{4} \sum_{n=0}^{\infty} \frac{2+\kappa n(\kappa(n-1)-4)}{(\kappa+1)^{n+3}} L_{n}(\kappa t) .
$$

Hyperbolic case 1: numerical results

Example 2: We use the setup of the 1st example. We consider the spatial independent boundary function

$$
f(x, t)=f(t)\binom{1}{1}, \quad \text { for } \quad f(t)=\frac{t^{2}}{4} e^{-t+2}
$$

which admits the expansion

$$
f(t)=\frac{\kappa e}{4} \sum_{n=0}^{\infty} \frac{2+\kappa n(\kappa(n-1)-4)}{(\kappa+1)^{n+3}} L_{n}(\kappa t) .
$$

Even though the exact solution is unknown, we observe the convergence with respect to M, and N.

Hyperbolic case 1: numerical results

t	M	$N=10$	$N=15$	$N=20$
	16	0.104385591001	0.089274523790	0.089029847496
1	32	0.104414411445	0.089311568889	0.089061508274
	64	0.104414399045	0.089311556699	0.089061496285
	16	0.242963484605	0.268615650361	0.270356959200
2	32	0.242960849558	0.268601030910	0.270336784091
	64	0.242963476811	0.268601022577	0.270336775642
	16	0.294596074694	0.301687858830	0.299978778147
3	32	0.294584218004	0.301675713615	0.299984785021
	64	0.294584215781	0.301675711488	0.299984782636

Table: The second component of the numerical solution for $\kappa=1 / 2$, at the position $y=(0.5,-1.5)$.

Hyperbolic case 2: the inverse problem

Let $D \subset \mathbb{R}^{2}$ be doubly connected with two closed boundary curves Γ_{1} and Γ_{2}. We consider the Cauchy problem:

$$
\begin{align*}
\frac{\partial^{2} u}{\partial t^{2}} & =\Delta^{*} u, & & x \in D, t>0, \\
\frac{\partial u}{\partial t}(\cdot, 0)=u(\cdot, 0) & =0, & & x \in D, \tag{3}\\
u=f_{2}, \quad T u & =g_{2}, & & x \in \Gamma_{2},
\end{align*}
$$

where f_{2} and g_{2} are given functions and T is the traction operator

$$
T v=\lambda \operatorname{div} v \nu+2 \mu(\nu \cdot \operatorname{grad}) v+\mu \operatorname{div}(Q v) Q \nu
$$

with the outward unit normal vector ν to the boundary of D.

Hyperbolic case 2: the inverse problem

Let $D \subset \mathbb{R}^{2}$ be doubly connected with two closed boundary curves Γ_{1} and Γ_{2}. We consider the Cauchy problem:

$$
\begin{align*}
\frac{\partial^{2} u}{\partial t^{2}} & =\Delta^{*} u, & & x \in D, t>0, \\
\frac{\partial u}{\partial t}(\cdot, 0)=u(\cdot, 0) & =0, & & x \in D, \tag{3}\\
u=f_{2}, \quad T u & =g_{2}, & & x \in \Gamma_{2},
\end{align*}
$$

where f_{2} and g_{2} are given functions and T is the traction operator

$$
T v=\lambda \operatorname{div} v \nu+2 \mu(\nu \cdot \operatorname{grad}) v+\mu \operatorname{div}(Q v) Q \nu .
$$

with the outward unit normal vector ν to the boundary of D.
The direct problem (given u on Γ_{1}) is well-posed [R.J. Knops and L.E. Payne, 1971].

Hyperbolic case 2: the inverse problem

Inverse Problem

Reconstruct the data on Γ_{1}, given the system of equations (3).

Hyperbolic case 2: the inverse problem

Inverse Problem

Reconstruct the data on Γ_{1}, given the system of equations (3).

This is an ill-posed problem (instability).

Hyperbolic case 2: the inverse problem

Inverse Problem

Reconstruct the data on Γ_{1}, given the system of equations (3).

This is an ill-posed problem (instability).
We use the scaled Fourier expansion for u to obtain

$$
\begin{aligned}
\Delta^{*} u_{n}-\kappa^{2} u_{n} & =\sum_{m=0}^{n-1} \beta_{n-m} u_{m}, \\
u_{n}=f_{2, n}, \quad T u_{n}=g_{2, n}, & x \in \Gamma_{2},
\end{aligned}
$$

where $n \in \mathbb{N}_{0}$, and $\beta_{n}=\kappa^{2}(n+1)$.

Hyperbolic case 2: boundary integral equations

We construct

$$
u_{n}(x)=\frac{1}{2 \pi} \sum_{\ell=1}^{2} \sum_{m=0}^{n} \int_{\Gamma_{\ell}} E_{n-m}(x, y) q_{m}^{\ell}(y) d s(y), \quad x \in D
$$

Hyperbolic case 2: boundary integral equations

We construct

$$
u_{n}(x)=\frac{1}{2 \pi} \sum_{\ell=1}^{2} \sum_{m=0}^{n} \int_{\Gamma_{\ell}} E_{n-m}(x, y) q_{m}^{\ell}(y) d s(y), \quad x \in D
$$

and as $u_{n} \rightarrow \Gamma_{2}$, using the jump properties, we obtain

$$
\begin{aligned}
\frac{1}{2 \pi} \sum_{\ell=1}^{2} \int_{\Gamma_{\ell}} E_{0}(x, y) q_{n}^{\ell}(y) d s(y)=F_{n}(x), & x \in \Gamma_{2}, \\
\frac{1}{2} q_{n}^{2}(x)+\frac{1}{2 \pi} \sum_{\ell=1}^{2} \int_{\Gamma_{\ell}} T_{x} E_{0}(x, y) q_{n}^{\ell}(y) d s(y)=G_{n}(x), & x \in \Gamma_{2},
\end{aligned}
$$

for $n=0, \ldots, N$, with the right-hand sides

Hyperbolic case 2: boundary integral equations

$$
F_{n}(x)=f_{2, n}(x)-\frac{1}{2 \pi} \sum_{\ell=1}^{2} \sum_{m=0}^{n-1} \int_{\Gamma_{\ell}} E_{n-m}(x, y) q_{m}^{\ell}(y) d s(y)
$$

and

$$
G_{n}(x)=g_{2, n}(x)-\frac{1}{2} \sum_{m=0}^{n-1} q_{m}^{2}(x)-\frac{1}{2 \pi} \sum_{\ell=1}^{2} \sum_{m=0}^{n-1} \int_{\Gamma_{\ell}} T_{x} E_{n-m}(x, y) q_{m}^{\ell}(y) d s(y)
$$

Hyperbolic case 2: boundary integral equations

$$
F_{n}(x)=f_{2, n}(x)-\frac{1}{2 \pi} \sum_{\ell=1}^{2} \sum_{m=0}^{n-1} \int_{\Gamma_{\ell}} E_{n-m}(x, y) q_{m}^{\ell}(y) d s(y)
$$

and

$$
G_{n}(x)=g_{2, n}(x)-\frac{1}{2} \sum_{m=0}^{n-1} q_{m}^{2}(x)-\frac{1}{2 \pi} \sum_{\ell=1}^{2} \sum_{m=0}^{n-1} \int_{\Gamma_{\ell}} T_{x} E_{n-m}(x, y) q_{m}^{\ell}(y) d s(y)
$$

- As before, the kernels E_{n} contain logarithmic singularities but $T_{x} E_{n}$ has strong singularity (Cauchy type).

Hyperbolic case 2: boundary integral equations

$$
F_{n}(x)=f_{2, n}(x)-\frac{1}{2 \pi} \sum_{\ell=1}^{2} \sum_{m=0}^{n-1} \int_{\Gamma_{\ell}} E_{n-m}(x, y) q_{m}^{\ell}(y) d s(y)
$$

and

$$
G_{n}(x)=g_{2, n}(x)-\frac{1}{2} \sum_{m=0}^{n-1} q_{m}^{2}(x)-\frac{1}{2 \pi} \sum_{\ell=1}^{2} \sum_{m=0}^{n-1} \int_{\Gamma_{\ell}} T_{x} E_{n-m}(x, y) q_{m}^{\ell}(y) d s(y)
$$

- As before, the kernels E_{n} contain logarithmic singularities but $T_{x} E_{n}$ has strong singularity (Cauchy type).
- The forward operator is injective and has dense range.

Hyperbolic case 2: quadrature rules

Compared to

$$
E_{n}(x, y)=\ln |x-y| M^{n, 1}(|x-y|)+M^{n, 2}(|x-y|),
$$

the traction admits the decomposition

$$
T_{x} E_{n}(x, y)=\ln |x-y| W^{n, 1}(|x-y|)+\frac{1}{|x-y|} W^{n, 1}(|x-y|),
$$

for some analytic matrix-valued functions $M^{n, k}, W^{n, k}, k=1,2$.

Hyperbolic case 2: quadrature rules

Compared to

$$
E_{n}(x, y)=\ln |x-y| M^{n, 1}(|x-y|)+M^{n, 2}(|x-y|),
$$

the traction admits the decomposition

$$
T_{x} E_{n}(x, y)=\ln |x-y| W^{n, 1}(|x-y|)+\frac{1}{|x-y|} W^{n, 1}(|x-y|)
$$

for some analytic matrix-valued functions $M^{n, k}, W^{n, k}, k=1,2$.
Given the parametrization, we approximate

$$
\begin{aligned}
T_{x} E_{n}\left(x_{k}(s), x_{\ell}(\sigma)\right)= & \ln \left(\frac{4}{e} \sin ^{2} \frac{s-\sigma}{2}\right) Q_{\ell, \ell}^{n, 1}(s, \sigma) \\
& +\cot \frac{\sigma-s}{2} Q_{\ell, \ell}^{n, 2}(s)+Q_{\ell, \ell}^{n, 3}(s, \sigma)
\end{aligned}
$$

for $s \neq \sigma, k, \ell=1,2, n=0, \ldots, N$.

Hyperbolic case 2: numerical results

Example 3: We set

$$
f_{2, n}(x)=\left[E_{n}\left(x, z_{1}\right)\right]_{1}, \quad g_{2, n}(x)=\left[T E_{n}\left(x, z_{1}\right)\right]_{1}, \quad x \in \Gamma_{2} .
$$

Hyperbolic case 2: numerical results

Example 3: We set

$$
f_{2, n}(x)=\left[E_{n}\left(x, z_{1}\right)\right]_{1}, \quad g_{2, n}(x)=\left[T E_{n}\left(x, z_{1}\right)\right]_{1}, \quad x \in \Gamma_{2} .
$$

The source and the measurement points are

$$
z_{1}=(3,3), \quad \text { and } \quad z_{2}=\frac{\sqrt{2}}{2}(1,1) \in \Gamma_{1}
$$

Hyperbolic case 2: numerical results

Example 3: We set

$$
f_{2, n}(x)=\left[E_{n}\left(x, z_{1}\right)\right]_{1}, \quad g_{2, n}(x)=\left[T E_{n}\left(x, z_{1}\right)\right]_{1}, \quad x \in \Gamma_{2} .
$$

The source and the measurement points are

$$
z_{1}=(3,3), \quad \text { and } \quad z_{2}=\frac{\sqrt{2}}{2}(1,1) \in \Gamma_{1}
$$

We consider noisy data of the form

$$
g_{2, n}^{\delta}=g_{2, n}+\delta \frac{\left\|g_{2, n}\right\|_{2}}{\|v\|_{2}} v
$$

for a normally distributed random variable v.

Hyperbolic case 2: numerical results

κ	M	$f_{1,0}\left(z_{2}\right)$	$f_{1,5}\left(z_{2}\right)$	$f_{1,10}\left(z_{2}\right)$
0.5	16	0.160838025793	0.028252624954	0.008865680398
	32	0.160981797423	0.028078500923	0.008781179908
		0.160981796003	0.028078500985	0.008781181106
1	16	0.035987791353	0.008580531214	-0.037640150526
	32	0.036002107356	0.008720257700	0.002279598771
		0.036002151515	0.008720380239	0.002279504879

Table: The reconstructed $f_{1, n}$ on Γ_{1}. The regularization parameter is 10^{-10} for $\kappa=0.5$, and 10^{-8} for $\kappa=1$.

Hyperbolic case 2: numerical results

Figure: The reconstructed function $f_{1}(x, t)$ on Γ_{1} for $N=10$ and $M=64$.

Hyperbolic case 2: numerical results

We define

$$
e_{f}^{2}(n)=\frac{\int_{\Gamma_{1}}\left(f_{1, n}-\left[E_{n}\left(\cdot, z_{1}\right)\right]_{1}\right)^{2} d x}{\int_{\Gamma_{1}}\left[\left[E_{n}\left(\cdot, z_{1}\right)\right]_{1}\right)^{2} d x}, \quad e_{g}^{2}(n)=\frac{\int_{\Gamma_{1}}\left(g_{1, n}-\left[T E_{n}\left(\cdot, z_{1}\right)\right]_{1}\right)^{2} d x}{\int_{\Gamma_{1}}\left(\left[T E_{n}\left(\cdot, z_{1}\right)\right]_{1}\right)^{2} d x}
$$

Hyperbolic case 2: numerical results

We define

$$
e_{f}^{2}(n)=\frac{\int_{\Gamma_{1}}\left(f_{1, n}-\left[E_{n}\left(\cdot, z_{1}\right)\right]_{1}\right)^{2} d x}{\int_{\Gamma_{1}}\left[\left[E_{n}\left(\cdot, z_{1}\right)\right]_{1}\right)^{2} d x}, \quad e_{g}^{2}(n)=\frac{\int_{\Gamma_{1}}\left(g_{1, n}-\left[T E_{n}\left(\cdot, z_{1}\right)\right]_{1}\right)^{2} d x}{\int_{\Gamma_{1}}\left(\left[T E_{n}\left(\cdot, z_{1}\right)\right]_{1}\right)^{2} d x}
$$

	$\delta=0 \%$		$\delta=3 \%$	
n	$e_{f}(n)$	$e_{g}(n)$	$e_{f}(n)$	$e_{g}(n)$
5	$5.9908 \mathrm{E}-06$	$7.7404 \mathrm{E}-05$	0.14558	0.71139
10	$1.0238 \mathrm{E}-05$	$8.0608 \mathrm{E}-05$	0.14038	0.65011
15	$1.0642 \mathrm{E}-05$	$4.6722 \mathrm{E}-05$	0.39071	0.64990
20	$7.8734 \mathrm{E}-05$	$5.5732 \mathrm{E}-04$	0.41676	0.82314

Table: Relative errors for the source point $z_{1}=(3,3)$, and $M=32$.

Hyperbolic case 2: numerical results

We compare $\tilde{E}(t)$ with

$$
\tilde{u}(x, t)=\kappa \sum_{n=0}^{N-1} u_{n}(x ; M) L_{n}(\kappa t), \quad x \in D .
$$

Hyperbolic case 2: numerical results

We compare $\tilde{E}(t)$ with

$$
\tilde{u}(x, t)=\kappa \sum_{n=0}^{N-1} u_{n}(x ; M) L_{n}(\kappa t), \quad x \in D
$$

		$N=$	15	$N=$	
t	M	$\delta=0 \%$	$\delta=3 \%$	$\delta=0 \%$	$\delta=3 \%$
1	16	0.46387720	0.56160816	0.34605948	0.54725934
	32	0.54302224	0.54522283	0.54096499	0.53709220
	$[\tilde{E}(t)]_{1}$	0.543055422		0.54099	98187
2	16	0.59385442	0.46302021	-1.41326137	0.36623652
	32	0.48564171	0.48223841	0.47964119	0.47575211
	$[\tilde{E}(t)]_{1}$	0.485671892		0.47968	3952

Hyperbolic case 3: the inverse problem

Let D be doubly-connected with smooth boundary $\Gamma=\Gamma_{1} \cup \Gamma_{2}$.
We consider the initial BVP:

$$
\begin{align*}
\frac{1}{\alpha^{2}} \frac{\partial^{2} u}{\partial t^{2}}(x, t)-\Delta u(x, t) & =0, & & x \in D, t>0 \\
u(x, 0)=\frac{\partial u}{\partial t}(x, 0) & =0, & & x \in D \tag{4}\\
u(x, t) & =0, & & x \in \Gamma_{1}, t \geq 0 \\
\frac{\partial u}{\partial \nu}(x, t) & =g(x, t), & & x \in \Gamma_{2}, t \geq 0
\end{align*}
$$

Hyperbolic case 3: the inverse problem

Let D be doubly-connected with smooth boundary $\Gamma=\Gamma_{1} \cup \Gamma_{2}$.
We consider the initial BVP:

$$
\begin{align*}
\frac{1}{\alpha^{2}} \frac{\partial^{2} u}{\partial t^{2}}(x, t)-\Delta u(x, t) & =0, & & x \in D, t>0 \\
u(x, 0)=\frac{\partial u}{\partial t}(x, 0) & =0, & & x \in D \tag{4}\\
u(x, t) & =0, & & x \in \Gamma_{1}, t \geq 0 \\
\frac{\partial u}{\partial \nu}(x, t) & =g(x, t), & & x \in \Gamma_{2}, t \geq 0
\end{align*}
$$

The direct problem is well-posed [J. L. Lions and E. Magenes, 1972].

Hyperbolic case 3: the inverse problem

Let D be doubly-connected with smooth boundary $\Gamma=\Gamma_{1} \cup \Gamma_{2}$.
We consider the initial BVP:

$$
\begin{align*}
\frac{1}{\alpha^{2}} \frac{\partial^{2} u}{\partial t^{2}}(x, t)-\Delta u(x, t) & =0, & & x \in D, t>0 \\
u(x, 0)=\frac{\partial u}{\partial t}(x, 0) & =0, & & x \in D \tag{4}\\
u(x, t) & =0, & & x \in \Gamma_{1}, t \geq 0 \\
\frac{\partial u}{\partial \nu}(x, t) & =g(x, t), & & x \in \Gamma_{2}, t \geq 0
\end{align*}
$$

The direct problem is well-posed [J. L. Lions and E. Magenes, 1972].

Inverse Problem

Reconstruct Γ_{1} from the knowledge of g and $u=f$ on Γ_{2}.

Hyperbolic case 3: time discretization

We consider the expansion

$$
u(x, t)=\kappa \sum_{n=0}^{\infty} u_{n}(x) L_{n}(\kappa t)
$$

and we obtain

$$
\begin{align*}
\Delta u_{n}-\beta_{0} u_{n} & =\sum_{m=0}^{n-1} \beta_{n-m} u_{m}, & & x \in D, \\
u_{n}(x) & =0, & & x \in \Gamma_{1}, \tag{5}\\
u_{n}(x)=f_{n}(x), \quad \frac{\partial u_{n}}{\partial \nu} & =g_{n}(x), & & x \in \Gamma_{2},
\end{align*}
$$

for $n \in \mathbb{N}_{0}$, where $\beta_{n}=(n+1) \kappa^{2} / \alpha^{2}$.

Hyperbolic case 3: boundary integral equations

We use

$$
u_{n}(x)=\frac{1}{\pi} \sum_{\ell=1}^{2} \sum_{m=0}^{n} \int_{\Gamma_{\ell}} E_{n-m}(x, y) \phi_{m}^{\ell}(y) d s(y), \quad x \in D
$$

Hyperbolic case 3: boundary integral equations

We use

$$
u_{n}(x)=\frac{1}{\pi} \sum_{\ell=1}^{2} \sum_{m=0}^{n} \int_{\Gamma_{\ell}} E_{n-m}(x, y) \phi_{m}^{\ell}(y) d s(y), \quad x \in D
$$

and we obtain

$$
\begin{aligned}
\frac{1}{\pi} \sum_{\ell=1}^{2} \int_{\Gamma_{\ell}} E_{0}(x, y) \phi_{n}^{\ell}(y) d s(y)=F_{1, n}(x), & x \in \Gamma_{1}, \\
\phi_{n}^{2}(x)+\frac{1}{\pi} \sum_{\ell=1}^{2} \int_{\Gamma_{\ell}} \frac{\partial E_{0}}{\partial n(x)}(x, y) \phi_{n}^{\ell}(y) d s(y)=G_{n}(x), & x \in \Gamma_{2}, \\
\frac{1}{\pi} \sum_{\ell=1}^{2} \int_{\Gamma_{\ell}} E_{0}(x, y) \phi_{n}^{\ell}(y) d s(y)=F_{2, n}(x), & x \in \Gamma_{2},
\end{aligned}
$$

Hyperbolic case 3: boundary integral equations

for the right-hand side

$$
\begin{aligned}
F_{1, n}(x) & =-\frac{1}{\pi} \sum_{\ell=1}^{2} \sum_{m=0}^{n-1} \int_{\Gamma_{\ell}} E_{n-m}(x, y) \phi_{m}^{\ell}(y) d s(y) \\
G_{n}(x) & =g_{n}(x)-\sum_{m=0}^{n-1} \phi_{m}^{2}(x)-\frac{1}{\pi} \sum_{\ell=1}^{2} \sum_{m=0}^{n-1} \int_{\Gamma_{\ell}} \frac{\partial E_{n-m}}{\partial n(x)}(x, y) \phi_{m}^{\ell}(y) d s(y), \\
F_{2, n}(x) & =f_{n}(x)-\frac{1}{\pi} \sum_{\ell=1}^{2} \sum_{m=0}^{n-1} \int_{\Gamma_{\ell}} E_{n-m}(x, y) \phi_{m}^{\ell}(y) d s(y) .
\end{aligned}
$$

Hyperbolic case 3: boundary integral equations

 Iterative scheme:(1) Given an initial guess for Γ_{1}, we solve the first two parametrized equations for the densities.

Hyperbolic case 3: boundary integral equations

 Iterative scheme:(1) Given an initial guess for Γ_{1}, we solve the first two parametrized equations for the densities.
(2) Keeping the densities fixed, we linearize the 3rd equation for the perturbed boundary.

Hyperbolic case 3: boundary integral equations

Iterative scheme:

(1) Given an initial guess for Γ_{1}, we solve the first two parametrized equations for the densities.
(2) Keeping the densities fixed, we linearize the 3rd equation for the perturbed boundary.
(3) We repeat the first two steps until a suitable stopping criterion is satisfied.

Hyperbolic case 3: boundary integral equations

Iterative scheme:

(1) Given an initial guess for Γ_{1}, we solve the first two parametrized equations for the densities.
(2) Keeping the densities fixed, we linearize the 3rd equation for the perturbed boundary.
(3) We repeat the first two steps until a suitable stopping criterion is satisfied.

Comments

- The Fréchet derivative operator is injective.

Hyperbolic case 3: boundary integral equations

Iterative scheme:

(1) Given an initial guess for Γ_{1}, we solve the first two parametrized equations for the densities.
(2) Keeping the densities fixed, we linearize the 3rd equation for the perturbed boundary.
(3) We repeat the first two steps until a suitable stopping criterion is satisfied.

Comments

- The Fréchet derivative operator is injective.
- We obtain an overdetermined system of equations for the perturbed boundary.

Hyperbolic case 3: numerical implementation

We consider

$$
x_{1}(s)=\{r(s)(\cos s, \sin s): s \in[0,2 \pi]\}
$$

and we apply trigonometric interpolation

$$
q(s) \approx \sum_{j=0}^{2 J} q_{j} \tau_{j}(s), \quad \mathbb{N} \ni J \ll M
$$

with

$$
\tau_{j}(s)= \begin{cases}\cos (j s), & \text { for } j=0, \ldots, J \\ \sin ((j-J) s), & \text { for } j=J+1, \ldots, 2 J\end{cases}
$$

Hyperbolic case 3: numerical implementation

We consider

$$
x_{1}(s)=\{r(s)(\cos s, \sin s): s \in[0,2 \pi]\},
$$

and we apply trigonometric interpolation

$$
q(s) \approx \sum_{j=0}^{2 J} q_{j} \tau_{j}(s), \quad \mathbb{N} \ni J \ll M
$$

with

$$
\tau_{j}(s)= \begin{cases}\cos (j s), & \text { for } j=0, \ldots, J \\ \sin ((j-J) s), & \text { for } j=J+1, \ldots, 2 J\end{cases}
$$

We solve the linear system with Tikhonov regularization

$$
\min _{\boldsymbol{q}}\left\{\|\boldsymbol{A} \boldsymbol{q}-\boldsymbol{b}\|_{2}^{2}+\lambda\|\boldsymbol{q}\|_{2}^{2}\right\}
$$

for a regularization parameter $\lambda>0$.

Hyperbolic case 3: numerical results

Example 4: We set $M=64, \kappa=1, \alpha=1$ and $N=10$. The results are presented for $J=13$:

Figure: Reconstructions of Γ_{1} for exact data (left) and data with 3% noise (right).

Hyperbolic case 3: numerical results

Example 5: The results are presented for $J=5$:

Figure: Reconstructions of Γ_{1} for exact data (left) and noisy data (right).

Parabolic case: the inverse problem

We consider the Cauchy problem:

$$
\begin{align*}
\frac{1}{\alpha} \frac{\partial u}{\partial t}(x, t)-\Delta u(x, t) & =0, & & x \in D, t>0, \\
u(x, 0) & =0, & & x \in D, \\
u(x, t) & =0, & & x \in \Gamma_{1}, t \geq 0, \tag{6}\\
\frac{\partial u}{\partial \nu}(x, t) & =g(x, t), & & x \in \Gamma_{2}, t \geq 0 .
\end{align*}
$$

Parabolic case: the inverse problem

We consider the Cauchy problem:

$$
\begin{align*}
\frac{1}{\alpha} \frac{\partial u}{\partial t}(x, t)-\Delta u(x, t) & =0, & & x \in D, t>0, \\
u(x, 0) & =0, & & x \in D, \\
u(x, t) & =0, & & x \in \Gamma_{1}, t \geq 0, \tag{6}\\
\frac{\partial u}{\partial \nu}(x, t) & =g(x, t), & & x \in \Gamma_{2}, t \geq 0 .
\end{align*}
$$

The direct problem is well-posed [A. Friedman, 1964].

Parabolic case: the inverse problem

We consider the Cauchy problem:

$$
\begin{align*}
\frac{1}{\alpha} \frac{\partial u}{\partial t}(x, t)-\Delta u(x, t) & =0, & & x \in D, t>0, \\
u(x, 0) & =0, & & x \in D, \\
u(x, t) & =0, & & x \in \Gamma_{1}, t \geq 0, \tag{6}\\
\frac{\partial u}{\partial \nu}(x, t) & =g(x, t), & & x \in \Gamma_{2}, t \geq 0 .
\end{align*}
$$

The direct problem is well-posed [A. Friedman, 1964].

Inverse Problem

Reconstruct Γ_{1} from the knowledge of the thermal flux g and $u=f$ on Γ_{2}.

Parabolic case: time discretization

Given the scaled Fourier expansion of u, we derive

$$
\begin{align*}
\Delta u_{n}-\beta^{2} u_{n} & =\beta^{2} \sum_{m=0}^{n-1} u_{m}, & & x \in D, \\
u_{n}(x) & =0, & & x \in \Gamma_{1}, \tag{7}\\
u_{n}(x)=f_{n}(x), \quad \frac{\partial u_{n}}{\partial \nu} & =g_{n}(x), & & x \in \Gamma_{2},
\end{align*}
$$

for $n \in \mathbb{N}_{0}$, where $\beta^{2}=\kappa / \alpha$.

Parabolic case: boundary integral equations

We use

$$
u_{n}(x)=\frac{1}{\pi} \sum_{\ell=1}^{2} \sum_{m=0}^{n} \int_{\Gamma_{\ell}} E_{n-m}(x, y) \phi_{m}^{\ell}(y) d s(y), \quad x \in D
$$

Parabolic case: boundary integral equations

We use

$$
u_{n}(x)=\frac{1}{\pi} \sum_{\ell=1}^{2} \sum_{m=0}^{n} \int_{\Gamma_{\ell}} E_{n-m}(x, y) \phi_{m}^{\ell}(y) d s(y), \quad x \in D
$$

and we obtain

$$
\begin{aligned}
\frac{1}{\pi} \sum_{\ell=1}^{2} \int_{\Gamma_{\ell}} E_{0}(x, y) \phi_{n}^{\ell}(y) d s(y)=F_{1, n}(x), & x \in \Gamma_{1}, \\
\phi_{n}^{2}(x)+\frac{1}{\pi} \sum_{\ell=1}^{2} \int_{\Gamma_{\ell}} \frac{\partial E_{0}}{\partial n(x)}(x, y) \phi_{n}^{\ell}(y) d s(y)=G_{n}(x), & x \in \Gamma_{2}, \\
\frac{1}{\pi} \sum_{\ell=1}^{2} \int_{\Gamma_{\ell}} E_{0}(x, y) \phi_{n}^{\ell}(y) d s(y)=F_{2, n}(x), & x \in \Gamma_{2},
\end{aligned}
$$

Parabolic case: numerical results

Example 6: We set $M=64, \kappa=1$ and $N=10$.

Figure: Reconstructions of Γ_{1}, using $J=5$, for exact data (left) and data with 3% noise (right).

Parabolic case: numerical results

Example 7: Here, $J=7$ and we use $r_{0}=0.5$:

Figure: Reconstructions of Γ_{1} for exact data (left) and noisy data (right).

References

(1) R. Chapko and R. Kress, On the numerical solution of initial boundary value problems by the Laguerre transformation and boundary integral equations, Series in Mathematical Analysis and Applications 2, 55-69, 2000
(2) R. Chapko and B. T. Johansson, A boundary integral equation method for numerical solution of parabolic and hyperbolic Cauchy problems, Applied Numerical Mathematics 129, 104-119, 2018
(3) R. Chapko and L. M., On the numerical solution of the exterior elastodynamic problem by a boundary integral equation method, J. Integral Equations Appl., 30(4), 521-542, 2018
(4) R. Chapko and L. M., On the non-linear integral equation approach for an inverse boundary value problem for the heat equation, Journal of Engineering Mathematics 119 (1), 255-268, 2019
(5) R. Chapko, B.T. Johansson and L. M., On a boundary integral solution of a lateral planar Cauchy problem in elastodynamics, Journal of Computational and Applied Mathematics 367, 112463, 2020
(6) R. Chapko and L. M., On the numerical solution of a hyperbolic inverse boundary value problem in bounded domains, Mathematics 10(5), 750, 2022

