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Inverse problems

We will discuss two ways of approaching the uniqueness issue of the
inverse problem of determining the refractive index n(x) of an
inhomogeneity from scattering related information.

Unique determination of n(x) from far field data for many or a few
incident plane waves.
Determination of n(x) based on the complete or partial knowledge
of transmission eigenvalues.

Basic features, practical interest of uniqueness theorems and special
techniques and possible connections between the two approaches



Outline

Part 1: Uniqueness in inverse scattering
1 Theorem for full far field data
2 Karp’s theorem for inhomogeneous domains
3 Unique determination of a dielectric disk

Part 2: Inverse spectral problems
1 Inverse Sturm-Liouville eigenvalue problem
2 Uniqueness theorems
3 Inverse transmission eigenvalue problem
4 Uniqueness theorems



Part 1: Uniqueness of Inverse Scattering Problem

Inverse problem: Assume that we know all far field pattern u∞(x̂ ,d) for
all x̂ ,d ∈ S2 and a fixed wave number k . Is this information enough to
uniquely determine the refractive index n(x) of a scattering process?

The answer is positive. In R3 : Nachman (1988), Novikov (1988),
Ramm (1988).
In R2 : Bukhgeim (2008).
We will discuss the problem in R3 and a version due to Hähner (1996).
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Part 1: Uniqueness of Inverse Scattering Problem

Some necessary tools: A completeness property of products of entire
harmonic functions:

Theorem (Calderón)
If h1 and h2 are entire harmonic functions, then the set h1h2 is
complete in L2(D) for any bounded domain D ⊂ R3.

(That is,
∫

D ϕh1h2dx = 0 implies ϕ = 0 a.e. in D.)

Proof: a nice application of Fourier Integral Theorem!
For the uniqueness theorem, we need a similar property, but instead
for products v1v2 of solutions to equations ∆v1 + k2n1v1 = 0 and
∆v2 + k2n2v2 = 0.
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Uniqueness of Inverse Scattering Problem

For the cube Q := [−π, π]3 ⊂ R3, the functions

ea(x) :=
1

√
2π

2 eia·x , a ∈ Z̃ 3

provide an orthonormal basis for L2(Q), where

Z̃3 := {a = b − (0,
1
2
,0) : b ∈ Z3}

If f ∈ L2(Q), then we denote its Fourier coefficients with respect to ea
by f̂a.



Uniqueness of Inverse Scattering Problem

Using these definitions, it can be shown that

Theorem

Let t > 0 and ζ = t(1, i ,0) ∈ C3. Then,

Gζ f = −
∑
a∈Z̃3

f̂a
a · a + 2ζ · a

ea

defines an operator Gζ : L2(Q) → H2(Q) such that
∥Gζ f∥L2(Q) ≤ 1

t ∥f∥L2(Q) and ∆Gζ f + 2iζ · ∇Gζ f = f in the weak sense
for all f ∈ L2(Q).



Uniqueness of Inverse Scattering Problem

The previous theorem is useful in proving the following result

Lemma
Let D be an open ball centered at the origin such that
supp(1 − n) ⊂ D. Then there exists C > 0 such that for each z ∈ C3

that satisfies z · z = 0 and |Re z| ≥ 2k2∥n∥∞ there exists a solution
v ∈ H2(D) to the equation

∆v + k2nv = 0, in D

of the form v(x) = eiz·x [1 + w(x)], where ∥w∥L2(D) ≤ C
|Re z|



Uniqueness of Inverse Scattering Problem

Returning to the scattering problem, we have the following
completeness result

Lemma
Let B,D are two balls with center at the origin, such that they contain
supp(1 − n) and B ⊂ D. Then the family of total fields {u(.,d) d ∈ S2}
that solve the scattering problem for an incident plane wave eikx ·d is
complete in the closure of the set

H := {v ∈ H2(D) : ∆v + k2nv = 0, D}

with respect to the L2(B)-norm.



Uniqueness of Inverse Scattering Problem

This completeness result is essential in proving the following
uniqueness theorem in R3, which requires infinitely many incident
plane waves.

Theorem (A. Nachmann, R. Novikov and A. G. Ramm)

The refractive index n(x) is uniquely determined by a knowledge of the
far field pattern u∞(x̂ ,d) for all x̂ ,d ∈ S2 and a fixed wave number k.



Proof for uniqueness theorem

Assume n1,n2 are two refractive indices such that
u1,∞(.,d) = u2,∞(.,d) for d ∈ S2. If B ⊂ D are two open balls that have
center at origin and contain the support of n1,n2, from Rellich’s Lemma
we have that

u1(.,d) = u2(.,d), in R3 \ B

and for all directions d ∈ S2. Hence, if we define u := u1 − u2 it
satisfies the boundary conditions u = ∂u

∂ν = 0 on ∂B and the equation

∆u + k2n1u = k2(n2 − n1)u2 on B



Proof for uniqueness theorem

If we combine the latter with the differential equation for ũ1 := u1(., d̃)
we obtain

k2ũ1u2(n2 − n1) = ũ1(∆u + k2n1u) = ũ1∆u − u∆ũ1

From Green’s theorem and boundary values, we have that∫
B

u1(., d̃)u2(.,d)(n1 − n2)dx = 0



Proof for uniqueness theorem

From the previous Lemma, this implies that∫
B

v1v2(n1 − n2)dx = 0

for all H2(D) solutions of the equations ∆v1 + k2n1v1 = 0,
∆v2 + k2n2v2 = 0 in D. For a given y ∈ R3 \ {0} and ρ > 0, we select
vectors a,b ∈ R3 such that {y ,a,b} is an orthogonal basis in R3 such
that |a| = 1 and |b|2 = |y |2 + ρ2. Then, if we define

z1 := y + ρa + ib, z2 := y − ρa − ib



Proof for uniqueness theorem

We calculate

zj · zj = |Rezj |2 − |Imzj |2 + 2iRezj · Imzj = |y |2 + ρ2 − |b|2 = 0

and
|Rezj |2 = |y |2 + ρ2 ≥ ρ2

Now, we use the solutions v1, v2 corresponding to the refractive indices
n1,n2 and the vectors z1, z2 that are described by a previous lemma.
By substituting into the last integral and since z1 + z2 = 2y , we have
that ∫

B
e2iy ·x [1 + w1(x)][1 + w2(x)][n1(x)− n2(x)]dx = 0



Proof for uniqueness theorem

Sending ρ → ∞, by using the inequality

∥wj∥L2(D) ≤
C

|Rezj |

and |Rezj | ≥ ρ, we have∫
B

e2iy ·x [n1(x)− n2(x)]dx = 0

for all y ∈ R3. From the Fourier integral theorem, we conclude that
n1 = n2 in B.



Uniqueness for special geometries

Under appropriate symmetry assumptions for the far field patterns, the
corresponding scatterer must be spherical.
First we state a version of this result for the Dirichlet problem and
afterwards its extension to the Neumann and inhomogeneous medium
problems.

Theorem (Karp’s Theorem for the Dirichlet problem)

Suppose that D ⊂ R2 is sound soft and the far field pattern is of the
form

F (k ; θ,a) = F0(k ; θ − a)

for some function F0. Then, D is a disk.



Uniqueness for special geometries

Theorem (D. Colton and A. Kirsch (1988))
Let the scatterer D be sound-hard and suppose that
F (k ; θ,a) = F0(k ; θ − a) holds for some fixed wavenumber k and all
a ∈ [−π, π], θ ∈ [−π, π]. Then, D is a disk.



Uniqueness for special geometries

For the case of an inhomogeneous medium we also have the following
result

Theorem (D. Colton and A. Kirsch (1988))
Suppose that F is the far field pattern corresponding to an
inhomogeneous medium with continuously differentiable refractive
index n(x) and F (k ; θ,a) = F0(k ; θ − a) is satisfied for all k > 0 and all
a ∈ [−π, π], θ ∈ [−π, π]. Then, m(x) := 1 − n(x) is spherically
stratified, that is m(x) = m0(r) for some function m0.



Unique determination of a dielectric disk

Consider the transmission problem of finding u ∈ H1
loc(R

2\D) and
v ∈ H1(D) that solve

∆u + k2
0 u = 0, in R2\D, ∆v + k2

d v = 0, in D

such that
u = v ,

∂u
∂η

=
∂v
∂η

on ∂D

where u = ui + us and us satisfies the Sommerfeld radiation condition
and k0, kd > 0, k0 ̸= kd . The inverse (obstacle) problem is given the far
field u∞ for only one incident plane wave with incident direction d ∈ S1,
to determine the boundary ∂D of the dielectric scatterer D.



Unique determination of a dielectric disk

Theorem (Kress and Altundag, 2012)

A dielectric disk is uniquely determined by the far field pattern for one
incident plane wave.

Proof.
Using polar coordinates, the Jacobi - Anger expansion provides a nice
expansion for the incident plane wave:

eik0x ·d =
∞∑

n=−∞
inJn(k0ρ)einθ, x ∈ R2

where the Jn denote the Bessel functions of order n.
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∞∑

n=−∞
in

k0Jn(kdR)J
′
n(k0R)− kdJn(k0R)J

′
n(k0R)

kdH(1)
n (k0R)J ′

n(kdR)− k0Jn(kdR)(H(1)
n )′(k0R)

H(1)
n (k0ρ)einθ

for |x | ≥ R.
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Unique determination of a dielectric disk

Also,

v =
2
πR

∞∑
n=−∞

in−1

kdH(1)
n (k0R)J ′

n(kdR)− k0Jn(kdR)(H(1)
n )′(k0R)

J(1)
n (kdρ)einθ

for |x | ≤ R.
It can be seen that the scattered wave has an extension into the
interior of D with an exception at the origin.
If the far field for one incident wave coincides for two disks D1 and
D2 with different centers, then us ≡ 0.



Unique determination of a dielectric disk

By relating the direct scattering problem to solutions of the interior
transmission eigenvalue problem for D = D1 corresponding to a
piecewise refractive index n = 1 in R2\D and n = kd\k0 in D, it
can be shown that the two disks must have the same center. The
pairs in the expansions for u

1
and v can be considered as

solutions of the transmission eig. problem and are linearly
independent. For a real-valued refractive index interior
transmission eigenvalues have finite multiplicity. Contradiction and
therefore the two disks must have the same center.
Finally, to show that D1 and D2 have the same radius, we observe
that by symmetry the far field pattern from scattering of a plane
wave only depends on the angle between the incident and
observation directions. As a consequence, knowledge of the far
field for one incident direction implies knowledge for all incident
directions. The theorem follows from the uniqueness result for all
incident directions.



Part 2: Inverse Spectral Problems

Inverse Spectral Problem = Determine certain properties of a
system, from a set of spectral data (eigenvalues - eigenfunctions).
Inverse spectral problems are not well posed.
Typical ISP in scattering theory:
Determine the refractive index from a set of eigenvalues.
Inverse Sturm-Liouville problems:
Continuous refractive index: Rundell, Sacks, Hald ....
Discontinuous refractive index: Hald, Kobayashi, Willis, Shahriari,
Akbarfam and Teschl, ....



Physical motivation: Sturm-Liouville problem

Inverse Spectral Problems:
recover geometrical or physical/material properties from spectral data
Example 1:
Eigenvalue problem:

u(x, t)

x

x = 0 x = L

v ′′(x) + λρ(x)v(x) = 0, 0 < x < L
v ′(0)− hv(0) = v ′(L) + Hv(L) = 0.

Direct problem: Determine the infinite number of eigenvalues {λi}∞i=1
and corresponding eigenfunctions {vi(x)}∞i=1 = spectral data.
Inverse problem: Determine the density function ρ(x) from spectral
data.



Physical motivation: Sturm-Liouville problem

Inverse Spectral Problems:
recover geometrical or physical/material properties from spectral data
Example 1:
Using Liouville’s transform the previous problem can be defined as a
Sturm-Liouville eigenvalue problem:

u(x, t)

x

x = 0 x = L

−u′′(x) + q(x)u(x) = λu(x), 0 < x < L
u′(0)− hu(0) = u′(L) + Hu(L) = 0.

Direct problem: Determine the infinite number of eigenvalues {λi}∞i=1
and corresponding eigenfunctions {ui(x)}∞i=1 = spectral data.
Inverse problem: Determine the potential q(x) from spectral data.



Liouville transform

Auxilliary initial value problem Let v(r) = v(r ;λ) be the unique solution
of the initial-value problem

v ′′(r) + λn(r)v(r) = 0,

v(0) = 0, v ′(0) = 1.

Liouville transformation

ζ :=

∫ r

0

√
n(η)dη, z(ζ) = n(r)1/4v(r),

transforms the initial-value problem to:

z ′′(ζ)− p(ζ)z(ζ) + λz(ζ) = 0,

z(0) = 0, z ′(0) =
1

n(0)1/4 ,

where p(ζ) = 1
4

n′′(r)
n(r)2 − 5

16
n′(r)2

n(r)3



Uniqueness:
Determine q(x) from spectral data {λi}∞i=1, {µ}∞i=1 where λi correspond
to H and µi to a constant H ′ where H ′ ̸= H.
Uniqueness G. Borg, 1945, improvements I. M. Gelfand and B. M.
Levitan, 1951, K. Chadan, D. Colton, L. Paivarinta, W. Rundell,
1997......

Applications:
Microphones and sound systems, quantum theory, heliosseismology,
solutions of KdV equation, .....



Example 2: R2

Famous question by Mark Kac : "Can One Hear the Shape of a
Drum?" (1966)
For Dirichlet problem.
Answer negative. C. Gordon, D. Webb, and S. Wolpert (1992)

Example 3: R3

Check by sound experiment if a watermelon is ripe...complicated
because depends on the shape and the density but farmers know...



Part 2: Inverse Spectral Problems

1 Inverse spectral problem (ISP) for transmission eigenvalues:
Determine n(x) from transmission eigenvalues from a complete or
partial knowledge of transmission eugenvalues



Transmission Eigenvalue Problem

Find (w , v) such that

∆w + k2n(x)w = 0 in D
∆v + k2v = 0 in D

w = v on ∂D
∂w
∂ν

=
∂v
∂ν

on ∂D

It is a nonstandard eigenvalue problem

If n = 1 the interior transmission problem is degenerate

If ℑ(n) > 0 in D, there are no real transmission eigenvalues.



Spherically Symmetric Medium

We consider the interior eigenvalue problem for a ball of radius a with
index of refraction n(r)

∆w + k2n(r)w = 0 in B
∆v + k2v = 0 in B

w = v on ∂B
∂w
∂r

=
∂v
∂r

on ∂B

where B :=
{

x ∈ R3 : |x | < a
}

.



Spherically Symmetric Medium

Separation of variables:

vl(r , θ) = aℓjℓ(kr)Pℓ(cos θ) and wl(r , θ) = aℓYℓ(kr)Pℓ(cos θ)

jℓ is a spherical Bessel function and Yℓ is the solution of

Y ′′
ℓ +

2
r

Y ′
ℓ +

(
k2n(r)− ℓ(ℓ+ 1)

r2

)
Yℓ = 0

such that lim
r→0

(Yℓ(r)− jℓ(kr)) = 0.



Spherically Symmetric Medium

To determine the transmission eigenvalues we need to find an
appropriate non trivial pair of functions vl(r , θ),wl(r , , θ), satisfying the
transmission eigenvalue boundary conditions and due to linearity the
wave number must be such that the determinant :

dl(k) := det

 Yℓ(a) −jℓ(ka)

Y ′
ℓ(a) −kj ′ℓ(ka)

 = 0

Any determinant dl(k), l = 0, ...,∞ is a generator for a specific subset
of transmission eigenvalues.



Spherically Symmetric Medium

Values of k such that dℓ(k) has the asymptotic behavior

dℓ(k) =
1

a2k [n(0)]ℓ/2+1/4 sin

(
ka − k

∫ a

0
[n(r)]1/2dr

)
+ O

(
ln k
k2

)
as k → ∞



Asymptotic relations for real tr. eigenvalues -
continuous n

First Results:

Let A :=
∫ a

0

√
n(r)dr , a the radius, n(r) > 0,n ∈ C1[0,b],n′′ ∈ L2[0,b].

From McLaughlin-Polyakov (1994):
k2

j = j2π2

(A−a)2 + O(1), for p ∈ L2(0,A)
(For self-adjoint problems Hald - McLaughlin (1989)).
⇒ if two transmission problems for n1(r) and n2(r) have the same
infinite set of transmission eigenvalues then A1 = A2.



Inverse Spectral Problem - continuous n

Theorem (Cakoni - Colton - Gintides, (2010))

If n(0) is given then n(r) is uniquely determined from the knowledge of
all transmission eigenvalues, n ∈ C2[0,∞), radius a.

Proof:
Integral representation
Yl can be written in the form:

Yl(r) = jl(kr) +
∫ r

0
G(r , s, k)jl(ks)ds

where G satisfies the following problem:



The Uniqueness Theorem for the Inverse Problem

Goursat Problem

r2
[
∂2G
∂r2 + 2

r
∂G
∂r + k2n(r)G

]
= s2

[
∂2G
∂s2 + 2

s
∂G
∂s + k2G

]
, 0 < s ≤ r < 1

G(r , r , k) = k2

2r

∫ r
0 tm(t)dt , G(r , s, k) = O

(
(rs)1/2)

G(r , s; k) continuous in 0 ≤ s ≤ r < 1
G(r , s; k) is entire function of k of exponential type

G(r , s, k) = k2

2
√

rs

∫ √
rs

0 tm(t)dt
(
1 + O(k2)

)
where m(r) = 1 − n(r)



The Uniqueness Theorem for the Inverse Problem

jℓ(kr) =
√
π(kr)ℓ

2ℓ+1Γ(ℓ+ 3/2)

(
1 + O(k2r2)

)
shows that

c2ℓ+2

[
2ℓ+1Γ(ℓ+ 3/2)
√
πa(ℓ−1)/2

]2

=

a
∫ a

0

d
dr

(
1

2
√

rs

∫ √
rs

0
ρm(ρ)dρ

)
r=a

sℓ ds

−

ℓ

∫ a

0

1
2
√

as

∫ √
as

0
ρm(ρ)dρ sℓ ds +

aℓ

2

∫ a

0
ρm(ρ)dρ.



The Uniqueness Theorem for the Inverse Problem

After tedious calculation involving a change of variables and
interchange of orders of integration, simplifies to

c2ℓ+2 =
π

2ℓ+1a2Γ(ℓ+ 3/2)

∫ a

0
ρ2ℓ+2 m(ρ)dρ.

That means the coefficients of the first term in the power expansion
contains information about the contrast = refractive index.
But how to relate with the transmission eigenvalues?



The Uniqueness Theorem for the Inverse Problem

After tedious calculation involving a change of variables and
interchange of orders of integration, simplifies to

c2ℓ+2 =
π

2ℓ+1a2Γ(ℓ+ 3/2)

∫ a

0
ρ2ℓ+2 m(ρ)dρ.

That means the coefficients of the first term in the power expansion
contains information about the contrast = refractive index.
But how to relate with the transmission eigenvalues?



The Uniqueness Theorem for the Inverse Problem

The answer is given by Hadamard:

Hadamard’s Factorization Theorem

Let f (z) be an entire function of z with order ρ ≥ 0
that is for all z : |z| ≥ r satisfy |f (z)| ≤ ce|z|ρ . Then f (z) can be
represented as an infinite product

f (z) = z lePl (z)
∞∏

n=0

(
1 − z

zn

)
e
∑p

m=1
zm/zm

n
m , zn are the roots of the function.

where l is the multiplicity of zero as a root of f (z), Pl(z) is a polynomial
of degree less than or equal to ρ .
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The Uniqueness Theorem for the Inverse Problem

Example:

sin(πz) = πz
∞∏

n=1

(
1 − z2

n2

)
because sin(πz) has 0 with multiplicity one, roots ±n.



The Uniqueness Theorem for the Inverse Problem

▷ dl(k) is an entire function of k with order 1

Hadamard’s Factorization Theorem

dl(k) = k2l+2c2l+2

∞∏
n=1

(
1 − k2

k2
nl

)
, knl are the trans. eigen.

▷ The asymptotic form of G, yl and jl imply the identity:

c2l+2 =
π

(2l+1a2Γ(l + 3/2))2

∫ a

0
t2l+2m(t)dt .

All knl are known, so, dl(k)/c2l+2 is known

dl(k)
c2l+2

=
γl

a2k
sin (k − kA) + O

(
ln k
k2

)
where γl := 1/(c2l+2n(0)l/2+1/4)
Since dl(k)/c2l+2 is known γl is uniquely determined ∀ l ∈ N



The Uniqueness Theorem for the Inverse Problem

▷ Finally: we have the representation∫ a

0
t2l+2m(t)dt =

(2l+1Γ(l + 3/2))2

n(0)l/2+1/4γlπ

From Müntz’s theorem m(t) is uniquely determined.

A good reference is the book of P.J. Davis, Interpolation and
Approximation, Dover, New York, 1975.
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Spherically symmetric and discontinuous n(r)

▷ Based on results of Gintides - Pallikarakis1 and Pallikarakis2

Discontinuous refractive index:
n(r) is C2 in [0,d) and (d ,1], n(r) = 1 for r ≥ 1, n′(1) = 0

0 d r1

1 

n(r)     

- - - - - - - - - - - - - - - - - - - - -
Jump Conditions:
n(d+) = an(d−)
n′(d+) = a−1n′(d−) + bn(d−)
a > 0, |a − 1|+ |b| > 0,
d ∈ (0,1)

1
The inverse transmission eigenvalue problem for a discontinuous refractive index, Inverse Problems, 2017.

2
The inverse spectral problem for the reconstruction of the refractive index from the interior transmission problem, Ph.D.

thesis, NTUA, 2017.
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Spherically symmetric and discontinuous n(r)

Transformed Problem:

▷ Liouville transf.: z(ξ) := n(r)1/4yℓ(r), ξ(r) :=
∫ r

0

√
n(ρ)dρ

d2z(ξ)
dξ2 +

(
k2 − ℓ(ℓ+1)

ξ2 − g(ξ)
)

z(ξ) = 0, 0 < ξ ̸= d̃

g(ξ) = ℓ(ℓ+1)
r2n(r) − ℓ(ℓ+1)

ξ2 + n
′′
(r)

4n(r)2 − 5n
′
(r)2

16n(r)3

where

0 < ξ < A :=

∫ 1

0

√
n(t)dt and d̃ :=

∫ d

0

√
n(t)dt , d̃ ∈ (0,A)

▷ z is discontinuous at ξ = d̃ , with conditions:

z(d̃+) = ã z(d̃−),
dz(d̃+)

dξ
= ã−1 dz(d̃−)

dξ
+ b̃ n(d̃−)

where: |a − 1|+ |b| > 0 ⇒ |ã − 1|+ |b̃| > 0
ã = a1/4, b̃ = 1

4 n(d−)3/4n(d+)−5/4b + 1
4 n′(d−)n(d−)3/4n(d+)−9/4(1 − a2)



Spherically symmetric and discontinuous n(r)

Transformed Problem:

▷ Liouville transf.: z(ξ) := n(r)1/4yℓ(r), ξ(r) :=
∫ r

0

√
n(ρ)dρ

d2z(ξ)
dξ2 +

(
k2 − ℓ(ℓ+1)

ξ2 − g(ξ)
)

z(ξ) = 0, 0 < ξ ̸= d̃

g(ξ) = ℓ(ℓ+1)
r2n(r) − ℓ(ℓ+1)

ξ2 + n
′′
(r)

4n(r)2 − 5n
′
(r)2

16n(r)3

where

0 < ξ < A :=

∫ 1

0

√
n(t)dt and d̃ :=

∫ d

0

√
n(t)dt , d̃ ∈ (0,A)

▷ z is discontinuous at ξ = d̃ , with conditions:

z(d̃+) = ã z(d̃−),
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Spherically symmetric and discontinuous n(r)

Asymptotics of the characteristic functions:

▷ for n(r) ∈ C2[0,∞) ,

if ℓ = 0, D0(k) =
1

kn(0)1/4 sin k(1 − A) + O
(

1
k2

)
, k → ∞

if ℓ ≥ 1, Dℓ(k) =
1

kn(0)ℓ/2+1/4 sin k(1 − A) + O
(
ln k
k2

)
, k → ∞

Proposition

for n(r) ∈ C2[0,d) ∪ C2(d ,1]:

D0(k)= 1
kn(0)1/4

[
ã2+1

2ã sin k(1−A)+ 1−ã2
2ã sin k(1−A+2d̃)

]
+O( 1

k2 )

Dℓ(k)= 1
kn(0)ℓ/2+1/4

[
ã2+1

2ã sin k(1−A)+(−1)ℓ 1−ã2
2ã sin k(1−A+2d̃)

]
+O( ln k

k2 )

*proof based on definition of Dℓ and the Volterra integral equation of z(ξ).
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Spherically symmetric and discontinuous n(r)

Uniqueness Results:

Theorem (Uniqueness from eigenvalues for ℓ = 0)

Constants d̃ , ã are uniquely determined, if |ã − 1|+ |b̃| > 0 and:
(1). d̃ ∈ (0,A), for 0 < A < 1
(2). d̃ ∈

(
0, A−1

2

)
or d̃ ∈

(A−1
2 ,A − 1

)
∪ (A − 1,A) for A > 1

Theorem (Uniqueness from all eigenvalues for ℓ ≥ 0)

Let n(r) is C2 or p-w C2 and satisfies the jump conditions, where
1 − n(r) does not change sign. If n(0) is known, then n(r) is uniquely
determined by all transmission eigenvalues.

*proofs based on Hadamard’s factorization theorem, Müntz theorem
and work of Hald3 for discontinuous Sturm-Liouville problems.

3
Discontinuous inverse eigenvalue problems, Commun. Pure Appl. Math.,1984
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Inverse Spectral Problem - continuous n

First Results:

Let A :=
∫ a

0

√
n(r)dr , a the radius, n(r) > 0,n ∈ C1[0,a],n′′ ∈ L2[0,b].

Theorem (McLaughlin and Polyakov (1994))

Assume that for n1(r) and n2(r) in the same ball the inf. sequence of
the sph. symmetric ITE’s are common {k2

j }∞j=1 If also one of the
following assumptions holds:

1 n1(r) = n2(r) for 0 ≤ b < A, with 0 ≤
∫ b

r (ni(r))1/2dr ≤ (A + b)/2

2 n1(r) = n2(r) for A < b < 3A with 0 ≤
∫ b

r (ni(r))1/2dr ≤ (3A − b)/2
3 3A ≤ b

then n1(r) = n2(r) for 0 ≤ r < b.



Inverse Spectral Problem - continuous n

First Results:

Let A :=
∫ b

0

√
n(r)dr , b the radius, n(r) > 0,n ∈ C1[0,b],n′′ ∈ L2[0,b].

Theorem (McLaughlin and Polyakov (1994))

Assume that for n1(r) and n2(r) in the same ball we have an inf.
sequence of common ITE’s {k2

j }∞j=1 where
1 ∃ an integer m0: |k2

j | ≤ (m + 1/2)2π/(A − b)2 for all
j = 1, ...,m, m ≥ m0 and

2 for j > m0 all k2
j are real and |k2

j | ≥ (m0 + 1/2)2π/(A − b)2.
If also one of the following assumptions holds:

1 n1(r) = n2(r) for 0 ≤ b < A, with 0 ≤
∫ b

r (ni(r))1/2dr ≤ (A + b)/2

2 n1(r) = n2(r) for A < b < 3A with 0 ≤
∫ b

r (ni(r))1/2dr ≤ (3A − b)/2
3 3A ≤ b

then n1(r) = n2(r) for 0 ≤ r < b.



Inverse Spectral Problem - continuous n

Theorem (Aktosun - Gintides - V. Papanicolaou, (2011))

n(r) > 0,n ∈ C1[0,b],n′′ ∈ L2[0,b]
(a) If A < b, where A :=

∫ b
0

√
n(r)dr , then the eigenvalues

corresponding to spherically symmetric eigenfunctions determine n(r)
uniquely.
(b) If A = b, then the knowledge of all eigenvalues which are zeros of
∆0(λ) together with a constant γ determine n(r) uniquely.



Equivalent Eigenvalue Problem for Spherically
Symmetric Eigenfunctions

The problem is equivalent to the following eigenvalue problem:
v ′′ + λn(r)v = 0, 0 < r < b

v(0) = 0, ∆0(λ) :=
sin(

√
λb)√
λ

v ′(b;λ)− cos(
√
λb)v(b;λ) = 0

where λ = k2

The zeros λn of the entire function ∆0(λ) are transmission eigenvalues
corresponding to spherically symmetric eigenfunctions.

If λ ∈ R then ∆0(λ) ∈ R.
The order of ∆0(λ) is at most 1/2
∆0(0) = 0

From Hadamard Factorization Theorem

∆0(λ) = γλd
∞∏

n=1

(
1 − λ

λn

)
, γ ∈ R, d ≥ 1



Liouville transform

Auxilliary initial value problem Let v(r) = v(r ;λ) be the unique solution
of the initial-value problem

v ′′(r) + λn(r)v(r) = 0,

v(0) = 0, v ′(0) = 1.

Liouville transformation

ζ :=

∫ r

0

√
n(η)dη, z(ζ) = n(r)1/4v(r),

transforms the initial-value problem to:

z ′′(ζ)− p(ζ)z(ζ) + λz(ζ) = 0,

z(0) = 0, z ′(0) =
1

n(0)1/4 ,

where p(ζ) = 1
4

n′′(r)
n(r)2 − 5

16
n′(r)2

n(r)3



Asymptotic estimates

There exists a constant A > 0 such that∣∣∣∣∣v(x ;λ)− 1

[n(0)n(x)]1/4 √λ
sin

[√
λ

∫ x

0

√
n(η)dη

]∣∣∣∣∣
≤ A√

λ
exp

[
|ℑ{

√
λ}|
∫ x

0

√
n(η)dη

]
and ∣∣∣∣∣v ′(x ;λ)−

[
n(x)
n(0)

]1/4

cos

[√
λ

∫ x

0

√
n(η)dη

]∣∣∣∣∣
≤ A exp

[
|ℑ{

√
λ}|
∫ x

0

√
n(η)dη

]
for all x ∈ [0,b] and all λ ∈ C



Inverse Spectral Problem

Lemma 2.
(a) Assume that a :=

∫ b
0

√
n(x)dx < b. If v(x ;λ) satisfies the initial

value problem, then

v(b;λ) = γM(λ) and v ′(b;λ) = γN(λ),

where M(λ) and N(λ) are entire functions uniquely determined from
∆0(λ).

(b) If a = b, then v(b;λ) =
sin(b

√
λ)

[n(0)n(b)]1/4√λ
+ γM(λ) and

v ′(b;λ) =
[

n(b)
n(0)

]1/4
cos
(

b
√
λ
)
+ γN(λ) where M(λ), N(λ) are as in

case (a).



Inverse Spectral Problem

Proof
From the definition of ∆0(λ) for λ = π2n2/b2 for n ∈ N

v
(

b;
π2n2

b2

)
= (−1)n−1∆0

(
π2n2

b2

)
.

Similarly, for λ = π2(2n − 1)2/4b2, for n ∈ N, and

v ′
(

b;
π2(2n − 1)2

4b2

)
= (−1)n−1π(2n − 1)

2b
∆0

(
π2(2n − 1)2

4b2

)
and application of Lemma 1.



Inverse spectral problem

Lemma 1.
(a) Let f (λ) be an entire function such that
f (λ) = exp(c|ℑ{

√
λ}|)√

λ
O(1), |λ| → ∞ where c > 0

If f
(
π2n2

c2

)
= 0, for all n ∈ N := {1,2, ...} then there is a constant

C1 such that f (λ) = C1
sin(c

√
λ)√

λ
= C1c

∏∞
n=1

(
1 − c2λ

π2n2

)
(b) Let g(λ) be an entire function such that
g(λ) = exp(c|ℑ{

√
λ}|)O(1), |λ| → ∞

If g
(
π2(2n−1)2

4c2

)
= 0, for all n ∈ N then there is a constant C2 such

that g(λ) = C2 cos
(

c
√
λ
)
= C2

∏∞
n=1

[
1 − 4c2λ

π2(2n−1)2

]


