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Fluid-Particle Interactions

Fluid-particle interactions arise in many practical applications:
biotechnology, medicine, fuel droplets in combustion, sprays etc.
Here, we focus on a particular system derived by formal
asymptotics from a mesoscopic description. This is based on a
kinetic equation for the particle distribution of Fokker-Planck
type coupled to fluid equations.
The coupling between the kinetic and the fluid equations:
friction forces that the fluid and the particles exert mutually.
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The cloud of particles is described by its distribution function
fε(t, x , ξ) on phase space, which is the solution to the
dimensionless Vlasov-Fokker-Planck equation

∂t fε +
1√
ε

(
ξ · ∇x fε −∇xΦ · ∇ξfε

)
=

1

ε
divξ

((
ξ −
√
εuε
)
f +∇ξfε

)
.

The friction force is assumed to follow Stokes law and thus is
proportional to the relative velocity vector, i.e., is proportional to
the fluctuations of the microscopic velocity ξ ∈ R3 around the fluid
velocity field u.
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The RHS of the moment equation in the Navier-Stokes system
takes into account the action of the cloud of particles on the fluid
through the forcing term

Fε =

∫
R3

(
ξ√
ε
− uε(t, x)

)
f (t, x , ξ) dξ.

The density of the particles ηε(t, x) is related to the probability
distribution function fε(t, x , ξ) through the relation

ηε(t, x) =

∫
R3

fε(t, x , ξ) dξ.
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∂t%+ divx(%u) = 0

∂t(%u) + divx(%(u⊗ u) +∇x(p(%) + η)− µ∆u− λ∇x divx u

= −(η + β%)∇Φ,

∂tη + div(η(u−∇Φ))−∆η = 0.

% = %(t, x) – total mass density t – time, x ∈ Ω ⊂ R3

u = u(t, x) – velocity field

η = η(t, x) – the density of the particles
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p(%) = a%γ a > 0, γ > 1, β 6= 0

Φ external potential

µ > 0, λ +
2

3
µ ≥ 0 viscosity parameters

β > 0 if Ω is unbounded
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Boundary Conditions

u|∂Ω = ∇η · ν + η∇Φ · ν = 0 on (0,T )× ∂Ω

with ν denoting the outer normal vector to the boundary ∂Ω.

Initial Conditions

(%0,m0, η0) such that
%(0, x) = %0 ∈ Lγ(Ω) ∩ L1

+(Ω),

(%u)(0, x) = m0 ∈ L
6
5 (Ω) ∩ L1(Ω),

η(0, x) = η0 ∈ L2(Ω) ∩ L1
+(Ω).
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Total Energy

E (η, %,u)(t) :=∫
Ω

[
1

2
%(t)|u(t)|2︸ ︷︷ ︸

Kinetic Energy

+
a

γ − 1
%γ(t)︸ ︷︷ ︸

Internal Energy

+

Entropy︷ ︸︸ ︷
(η log η)(t) +

Potential Energy︷ ︸︸ ︷
(β%+ η)(t)Φ]dx

At the formal level, the total energy can be viewed as a Lyapunov
function satisfying the energy inequality

dE

dt
+

∫
Ω

[
µ|∇u|2 + λ| div u|2 + |2∇√η +

√
η∇Φ|2

]
dx ≤ 0.
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Confinement hypothesis

Given a domain Ω ∈ C 2,ν , ν > 0, Ω ⊂ R3, and given a bounded
from below external potential Φ : Ω −→ R+

0 satisfying
inf
x∈Ω

Φ(x) = 0 we will say that (Ω,Φ) verifies the confinement

hypotheses (HC) for the two-phase flow system coupled with
no-flux boundary conditions whenever:

If Ω is bounded, Φ is bounded and Lipschitz continuous in Ω̄
and the sub-level sets [Φ < k] are connected in Ω for any
k > 0.

If Ω is unbounded, we assume that Φ ∈W 1,∞
loc (Ω), β > 0, the

sub-level sets [Φ < k] are connected in Ω for any k > 0,

e−Φ/2 ∈ L1(Ω),

and

|∆Φ(x)| ≤ c1|∇Φ(x)| ≤ c2Φ(x), |x | > R > 0
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Examples

The confinement assumption (HC) has physical relevance in our
setting as it is verified for several domains Ω with Φ being the
gravitational potential. For instance,

1 when Ω = {x ∈ R3 | (x1, x2) ∈ [a, b]2, x3 ∈
[0,H]} and Φ(x) = gx3, where β = 1− %F

%P
.

2 when
Ω = {x ∈ R3 | (x1, x2) ∈ [a, b]2, x3 > 0} and Φ(x) = gx3,
where β = 1− %F

%P
and %F < %P .

3 when Ω = R3 \ B(0,R) and Φ(x) = g |x |, where B(0,R) is
the ball centered at the origin with radius R and β > 0.

Here, %F and %P are the typical mass density of fluid and particles,
respectively. Remark that 1. corresponds to the standard bubbling
case in which particles move upwards due to buoyancy.
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Derivation of the model

Set up of the model: The particles are viewed as identical
spheres of radius R > 0 with a uniform mass density. Assuming a
friction force which is proportional to the velocity difference
between the particles and the fluid, on a single particle, the fluid
produces a frictional force of

F (t, x , ξ) = 6πµR[u(t, x)− ξ]

where µ is the dynamic viscosity of the fluid. Accordingly, the force
exerted by the particles on the fluid is given by the sum

6πµR

∫
R3

[u(t, x)− ξ]fdξ.
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The particles move under the influence of Brownian motion,
resulting in diffusion in ξ. Here the diffusion coefficient is given by

D =
kθ

mP

6πµR

mP
=

kθ

mP

9µ

2R2%P

where

%P is the constant mass density of each particle,

mP is the total mass of each particle,

k is the Boltzmann constant, and

θ is the constant temperature of the system.
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Remark.

Here

Ts =
mP

6πµR
=

2R2%P
9µ

is the natural relaxation time for the kinetic equation usually
referred in these applications as the Stokes settling time. We
consider as usual

Vth =

√
kθ

mP

as the measure of the fluctuation of particles velocity, called their
thermal speed.
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In light of this setup, the equations for the unknowns %, u, and f
read

∂t%+ div(%u) = 0

∂t(%u) + div(%u⊗ u) +∇p(%) = −β%∇Φ + 6πµR
%F

∫
R3(ξ − u)f dξ

∂t f + ξ · ∇f −∇Φ · ∇ξf = 9µ
2R2%P

divξ

[
(ξ − u)f + kθ

mP
∇ξf

]
.

(1)
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Taking unitless parameters and defining

ε =
Ts
T

the ratio of the Stokes settling time for microscopic diffusion
(denoted Ts) and the characteristic time (denoted T ) we obtain:

∂t%ε + divx(%εuε) = 0 (2)

∂t(%εuε) + divx(%εuε ⊗ uε) +∇x(p(%ε)) (3)

= −β%ε∇xΦ +

∫
R3

(
ξ√
ε
− uε

)
fεdξ

∂t fε+
1√
ε

(ξ ·∇x fε+∇xΦ·∇ξfε) =
1

ε
divξ[(ξ−

√
εuε)fε+∇ξfε]. (4)
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In the mesoscopic model (2)-(4), %ε is the fluid density, uε is the
fluid velocity field, and fε is the mesoscopic particle density, the
three of which are the unknowns. In light of Newton’s Third Law,
the quantity ∫

R3

(
ξ√
ε
− uε

)
fε dξ

represents the frictional force exerted by the particles on the fluid.
The macroscopic particle density ηε is related to the mesoscopic
particle density fε by the relation

ηε(x , t) =

∫
R3

fε(x , ξ, t)dξ. (5)
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To derive the NSS system from (2)-(4), the asymptotic limit ε→ 0
is taken, representing that the Stokes settling time becomes
negligible compared to the characteristic time scale under
consideration. Indeed, following the formal analysis in Carrillo and
Goudon (2006) and denoting the first and second moments of fε as

Jε(x , t) :=

∫
R3

1√
ε
ξfε(x , t, ξ) dξ

and

Pε(x , t) :=

∫
R3

ξ ⊗ ξfε(x , t, ξ) dξ,
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respectively, the following equations for the moments are obtained
using (4):

∂tηε + div Jε = 0 (6)

ε∂tJε + divPε + ηε∇Φ = −(Jε − ηεuε). (7)

Taking ε→ 0 and integrating (7) over R3 yields formally

∇η + η∇Φ = −J + ηu. (8)

Inserting this into (6) and taking the limit yields the Smoluchowski
equation.

∂tη + div(η(u−∇Φ))−∆η = 0.
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Strategy

Variational Formulation

2 Derivatives ∼ in the sense of distributions

2 Equations ∼ family of integral identities

Approach

2 collect all available a priori estimates

2 construct a sequence of approximate problems whose
solutions satisfy these estimate

2 show that the sequence of approximate slns converges to
solution of the original problem.
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Total Energy

E (η, %,u)(t) :=∫
Ω

[
1

2
%(t)|u(t)|2︸ ︷︷ ︸

Kinetic Energy

+
a

γ − 1
%γ(t)︸ ︷︷ ︸

Internal Energy

+

Entropy︷ ︸︸ ︷
(η log η)(t) +

Potential Energy︷ ︸︸ ︷
(β%+ η)(t)Φ]dx

At the formal level, the total energy can be viewed as a Lyapunov
function satisfying the energy inequality

dE

dt
+

∫
Ω

[
µ|∇u|2 + λ| div u|2 + |2∇√η +

√
η∇Φ|2

]
dx ≤ 0.
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How do we derive the energy inequality?

We compute the time derivative of each component in the energy.

∂t

(
1

2
%(t)|u(t)|2

)
=?

Multiplying the momentum equation by u:

∂

∂t

(
1

2
%(t)|u(t)|2

)
+ div

(
1

2
%(t)|u(t)|2u

)

+ div(%γu)− %γ div u + div(ηu)− η div u =

µu∆u + λu∇ div u− (η + β%)u∇Φ
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How do we derive the energy inequality?

We compute the time derivative of each component in the energy.

∂t

(
1

2
%(t)|u(t)|2

)
=?

Multiplying the momentum equation by u:

∂

∂t

(
1

2
%(t)|u(t)|2

)
+ div

(
1

2
%(t)|u(t)2u

)
+

u2

2
[∂t%+ divx(%u)]

+ div(%γu)− %γ div u + div(ηu)− η div u =

µu∆u + λu∇ div u− (η + β%)u∇Φ
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∂

∂t
(β(%))) =?

Multiplying the continuity equation by (β(%))′:

∂

∂t
(β(%))) + div (β(%)u)−? = 0

div (β(%)u) = β′(%)∇%u + β(%) div u

div (β(%)u) = β′(%) div(%u)− β′(%)% div u + β(%) div u

∂

∂t
(β(%))) + div (β(%)u) +

[
β′(%)%− β(%)

]
div u = 0
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∂

∂t

(
a%γ

γ − 1

)
=?

Multiplying the continuity equation by (%γ)′:

∂

∂t
(%γ) + div (%γu) + %γ(γ − 1) div u = 0

Indeed:

[β′(%)%− β(%)] = γ%γ−1%− %γ = (γ − 1)%γ

Dividing by (γ − 1):

∂

∂t

(
%γ

γ − 1

)
+ div

(
%γ

γ − 1
u

)
+ %γ div u = 0
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∂t (η log η) =?

Multiplying Smoluchowski equation by (ηlogη)′:

∂

∂t
(η log η) + div (η log ηu) + η div u = (logη + 1)∆η
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d

dt
(β%+ η) (t)Φ(x) =?

d

dt
(β%+ η) Φ = div [−(β%+ η)u] Φ− div(η∇Φ)Φ−∆ηΦ.
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Adding the above relations, applying integration by parts and using
the boundary conditions we obtain:

E (%,u, η)(t)+

∫ t

0

∫
Ω

[
µ|∇u|2 + λ| div u|2 + |2∇√η +

√
η∇Φ|2

]
dxds

= E (%,u, η)(0).

with

E (t) :=

∫
Ω

[
1

2
%|u|2 +

a

γ − 1
%γ + (η log η) + (β%+ η)Φ

]
dx
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⇓

It is reasonable to anticipate that, at least for some sequences
tn →∞,

η(tn)→ ηs , %(tn)→ %s , %u(tn)→ 0

where ηs , %s satisfy the stationary problem

∇(p(%s) + ηs) = −(ηs + β%s)∇Φ on Ω

The energy estimate written in the form

E (t) +

∫ T

0
(‖∇u‖2

L2 + ‖ div u‖2
L2)dt +

∫ T

0

∫
Ω
|2∇√η +

√
η∇Φ|2dt

≤ E (0)
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|2∇√ηs +
√
ηs∇Φ|2 = 0

The aim of this paper is to show that, in fact, any weak solution
converges to a fixed stationary state as time goes to infinity, more
precisely,

%(t)→ %s strongly in Lγ(Ω),

ess sup
τ>t

∫
Ω
%(τ)|u(τ)|2 → 0,

η(t)→ ηs strongly in Lp(Ω),

as t →∞ under the confinement hypothesis on the domain Ω.
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The steady state (%s , ηs) are determined by{
∇p(%s) = −β%s∇Φ,

∇ηs = −ηs∇Φ,

∫
Ω

(%s , ηs) dx =

∫
Ω

(%0, η0) dx ,

and are given by the formulas

%s =

(
γ − 1

aγ
[−βΦ + C%)]+

) 1
γ−1

ηs = Cη exp(−Φ),

where Cη and C% are uniquely given by the initial masses.
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How do we find the appropriate space setting?

Assume smooth solutions. By integrating the continuity equation
in space and time: ∫

Ω
%dx =

∫
Ω
%0dx .

⇓

% ∈ L∞([0,T ]; L1(Ω))

Bound of Energy implies:

% ∈ L∞([0,T ]; Lγ(Ω))

1

2
%|u|2 ∈ L∞([0,T ]; L1(Ω))⇒ √%|u| ∈ L∞([0,T ]; L2(Ω))

%u ∈ L∞([0,T ]; L
2γ
γ+1 (Ω;R3)
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Bound of Energy implies (cont.):

u ∈ L2(0,T ;W 1,2
0 (Ω;R3))

⇓

u satisfy the boundary condition in the sense of traces

η log η ∈ L∞([0,T ]; L1(Ω))

η ∈ L2([0,T ]; L3/2(Ω)) ∩ L1(0,T ;W 1, 3
2 (Ω))
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The energy inequality yields

2∇x
√
η +
√
n∇xΦ ∈ L2(0,T ; L2(Ω;R3)).

Since η ∈ L∞(0,T ; L1(Ω)) and ∇xΦ is uniformly bounded

⇓

∇x
√
η ∈ L2(0,T ; L2(Ω;R3)),

and so √
η ∈ L2(0,T ;W 1,2(Ω)) ↪→ L2(0,T ; L6(Ω)).
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Using these estimates, the quantity

∇xη = 2
√
η∇x
√
η,

and Hölder’s inequality the particle density η satisfies

η ∈ L1(0,T ;W 1,3/2(Ω)) ↪→ L1(0,T ; L3(Ω)),

η ∈ L2(0,T ;W 1,1(Ω)) ↪→ L2(0,T ; L3/2(Ω)).
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Problem D.



∂t%+ divx(%u) = 0

∂t(%u) + divx(%(u⊗ u) +∇x(p(%) + η)− µ∆u− λ∇xdivxu

= −(η + β%)∇Φ,

∂tη + div(η(u−∇Φ))−∆η = 0.

B.C.
u|∂Ω = ∇η · ν + η∇Φ · ν = 0 on (0,T )× ∂Ω
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Strategy

Strategy

Variational Formulation

2 Derivatives ∼ in the sense of distributions

2 Equations ∼ family of integral identities

Approach

2 collect all available a priori estimates

2 construct a sequence of approximate problems whose solutions
satisfy these estimate

2 show that the sequence of approximate slns converges to
solution of the original problem.
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Lecture 2: Notion of weak solutions

Weak solutions

The idea of weak solutions is based on the concept of generalized
derivatives or distibutions. Classical functions are replaced by
integral averages

f : Q → R ≈
∫
Q
f ϕ, ϕ ∈ C∞c (Q).

C∞c (Q) denotes the set of infinitely differentiable functions with
compact support in Q.
Differential operators D can be conveniently expressed by means of
a formal by-parts integration:

Df ≈ −
∫
Q
f Dϕ, ϕ ∈ C∞c (Q).

⇓
Any (localy) integrable function possesses derivatives of arbitrary
order!
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Lecture 2: Notion of weak solutions

Renormalized solutions

Multiplying the continuity equation by (B ′(%)):

∂

∂t
(B(%))) + div (B(%)u) + b(%) divx u = 0 (9)

where
b(z) = B ′(z)z − B(z) (10)

Definition

We say that % and u is a renormalized solution of the continuity
equation on (0,T )× Ω if (9) holds in D′((0,T )× Ω) for any
functions

B ∈ C [0,∞) ∩ C 1(0,∞), b ∈ C [0,∞) bounded on [0,∞),

B(0) = b(0)− 0

satisfying (9)-(10) for all z > 0.
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Lecture 2: Notion of weak solutions

Free energy solutions

{%,u, η} is an admissible free energy solution of Problem D,
supplemented with the initial data {%0,u0, η0} provided that

% ≥ 0, u is a renormalized solution of the continuity
equation,that is,∫ T

0

∫
Ω

(%B(%)∂tϕ+ %B(%)u · ∇xϕ− b(%) div uϕ) dxdt

= −
∫

Ω
%0B(%0)ϕ(0, ·)dx

holds for any test function ϕ ∈ D([0,T )× Ω) and suitable b
and B.

The balance of momentum holds in distributional sense. The
velocity field u belongs to the space L2(0,T ;W 1,2(Ω;R3)),
therefore it is legitimate to require u to satisfy the boundary
conditions in the sense of traces.
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Lecture 2: Notion of weak solutions

η ≥ 0 is a weak solution of the Smoluchowski equation. That
is, ∫ ∞

0

∫
Ω
η∂tϕ+ ηu · ∇ϕ− η∇Φ · ∇ϕ−∇η∇ϕdxdt

= −
∫

Ω
η0ϕ(0, ·)dx

is satisfied for test functions ϕ ∈ D([0,T )× Ω̄) and any
T > 0. In particular,

η ∈ L2([0,T ]; L3/2(Ω)) ∩ L1(0,T ;W 1, 3
2 (Ω))
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Lecture 2: Notion of weak solutions

Given the total free-energy of the system by

E (%,u, η)(t) :=

∫
Ω

(
1

2
%|u|2 +

a

γ − 1
%γ + η log η + (β%+ η)Φ

)
,

then E (%,u, η)(t) is finite and bounded by the initial energy
of the system

E (%,u, η)(t) ≤ E (%0,u0, η0) a.e. t > 0

Moreover, the following free energy-dissipation inequality holds∫ ∞
0

∫
Ω

(
µ|∇u|2 + λ| div u|2 + |2∇√η +

√
η∇Φ|2

)
dt

≤ E (%0,u0, η0)
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Lecture 2: Main results

Theorem

Let Ω ⊂ R3 bounded domain and (Ω,Φ) satisfy the confinement
hypotheses (HC). Then, Problem D admits a weak solution
{%,u, η} on (0,∞)× Ω. In addition,

i) the total fluid mass and particle mass given by

M%(t) =

∫
Ω
%(t, ·) dx and Mη(t) =

∫
Ω
η(t, ·) dx ,

respectively, are constants of motion.

ii) the density satisfies the higher integrability result

% ∈ Lγ+Θ((0,T )× Ω), for any T > 0,

where Θ = min{2
3γ − 1, 1

4}.
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Lecture 2: Main results

Theorem

Let us assume that (Ω,Φ) satisfy the confinement hypotheses
(HC). Then, for any free-energy solution (%,u, η) of the Problem
D, there exist universal stationary states %s(x), ηs(x), such that

%(t)→ %s strongly in Lγ(Ω),

ess sup
τ>t

∫
Ω
%(τ)|u(τ)|2 dx → 0,

η(t)→ ηs strongly in Lp2(Ω) for p2 > 1,

as t →∞, where (ηs , %s) are characterized as the unique
free-energy solution of the stationary state problem:
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Lecture 2: Main results

{
∇p(%s) = −β%s∇Φ,

∇ηs = −ηs∇Φ,

∫
Ω

(%s , ηs) dx =

∫
Ω

(%0, η0) dx ,

given by the formulas

%s =

(
γ − 1

aγ
[−βΦ + C%)]+

) 1
γ−1

ηs = Cη exp(−Φ),

where Cη and C% are uniquely given by the initial masses.
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Lecture 2: Main results

Remark:

We need to show that the sequences (%n, ηn) of the time shifts
defined as

%n(t, x) := %(t + τn, x), τn →∞,

ηn(t, x) := η(t + τn, x), τn →∞,

contain subsequences, denoted by the same index w.l.o.g., such
that

%n → %s strongly in L1
loc((0, 1)× Ω)

and

ηn → ηs strongly in Lp1((0,T ); Lp2)(Ω) for some p1, p2 > 1,
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Lecture 3: Construction of approximating problems

How do we construct suitable approximating problems?
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Lecture 3: Construction of approximating problems

An approximation scheme based on
time-descretization
Reference: Carrillo, Karper, Trivisa, Nonlinear Analysis (2011)

Let δ > 0 be fixed. Given a time step h > 0, we discretize the time
interval [0,T ] in terms of the points tk = kh, k = 0, . . . ,M, with
Mh = T . Now, we sequentially determine functions

{%kδ,h,uk
δ,h, η

k
δ,h} ∈ W(Ω), k = 1, . . . ,M,

such that:

The time discretized continuity equation,

dh
t [%kδ,h] + div(%kδ,huk

δ,h) = 0,

holds in the sense of distributions on Ω.
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Lecture 3: Construction of approximating problems

The time discretized momentum equation with artificial
pressure,

dh
t [%kδ,huk

δ,h] + div(%kδ,huk
δ,h ⊗ uk

δ,h)− µ∆uk
δ,h − λ∇ div uk

δ,h

+∇
(
pδ(%

k
δ,h) + ηkδ,h

)
= −(β%kδ,h + ηkδ,h)∇Φ

holds in the sense of distributions on Ω

The time discretized particle density equation,

dh
t [ηkδ,h] + div

(
ηkδ,h(uk

δ,h −∇Φ)
)
−∆ηkδ,h = 0,

holds in the sense of distributions on Ω.

In the above equations, dh
t [φk ] = φk−φk−1

h denotes implicit time
stepping.
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Lecture 3: Construction of approximating problems

There exists an artificial pressure solution (h→ 0).

Vanishing artificial pressure limit (δ → 0).
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Lecture 3: Construction of approximating problems

An approximating scheme with the aid of
Faedo-Galerkin approximations

Here the aproximate solutions are constructed using a three-level
approximation scheme. Let Xn for n ∈ N denote a family of finite
dimensional spaces consisting of smooth vector-valued functions on
Ω vanishing of ∂Ω.
Two different types of regularizations are introduced:

1 The ε-regularizations are included to guarantee that certain a
priori estimates hold true while the energy inequality remains
valid at each level of the approximation.

2 The δ-regularization introduces an artificial pressure which is
essential in obtaining the convergence result.

Thus, we consider the approximate system:
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∂t%n + div(%nun) = ε∆%n

∂tηn + div(ηn(un −∇Φ)) = ∆ηn∫
Ω
∂t(%nun) ·w dx =

∫
Ω
%nun⊗un : ∇w + (a%γn +ηn +δ%αn ) div w dx

−
∫

Ω
S(∇u) : ∇w + ε∇%n · ∇un ·wdx −

∫
Ω

(ηn%n + ηn)∇Φ ·w dx

for any w ∈ Xn, where Xn is a finite dimensional space and α is
suitably large exponent.

Boundary conditions

∇x% · n = 0, un = (∇xηn + ηn∇xΦ) · n = 0 on (0,T )× ∂Ω
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Here, ε, δ > 0 are small and α is an appropriate constant. The
approximation scheme is also supplemented by the approximate
initial data {%0,δ,m0,δ, η0,δ}. The approximate initial data are
modifications of the original initial data in that

0 < δ ≤ %0,δ ≤ δ−1/2α for all x ∈ Ω, %0,δ → %0 in Lγ(Ω),
and |{x ∈ Ω|%0,δ(x) < %0(x)}| → 0 as δ → 0.

m0,δ(x) is the same as m0(x) unless %0,δ(x) < %0(x), in which
case m0,δ(x) = 0.

0 < δ ≤ η0,δ ≤ δ−1/2α for all x ∈ Ω, η0,δ → η0 in L2(Ω),
and |{x ∈ Ω|η0,δ(x) < η0(x)}| → 0 as δ → 0.
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Motivation

The approximating system is motivated as follows.

• The continuity equation contains the additional Laplacian
term ε∆%, known as vanishing viscosity, in order to increase
the regularity of the density % and obtain strong compactness
of the density at the first level of the approximation.

• In order to keep the energy estimate satisfied, the ε∇xu∇x%
term in the modified momentum equation is introduced to
balance the vanishing viscosity term.

• Finally, the δ%α term in the momentum equation serves to
increase the integrability of the pressure during the first two
levels of approximation. This is called the artificial pressure.
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Here, ε, δ > 0 are small and α is an appropriate constant. The
approximation scheme is also supplemented by the approximate
initial data {%0,δ,m0,δ, η0,δ}. The approximate initial data are
modifications of the original initial data in that

0 < δ ≤ %0,δ ≤ δ−1/2α for all x ∈ Ω, %0,δ → %0 in Lγ(Ω),
and |{x ∈ Ω|%0,δ(x) < %0(x)}| → 0 as δ → 0.

m0,δ(x) is the same as m0(x) unless %0,δ(x) < %0(x), in which
case m0,δ(x) = 0.

0 < δ ≤ η0,δ ≤ δ−1/2α for all x ∈ Ω, η0,δ → η0 in L2(Ω),
and |{x ∈ Ω|η0,δ(x) < η0(x)}| → 0 as δ → 0.
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In part, these hypotheses ensure that the initial energy

E (0) = Eδ(0) :=∫
Ω

(
1

2

|m0,δ|2

%0
+

δ

α− 1
%α0,δ + η0,δ log η0,δ + (β%0,δ + η0,δ)Φ

)
dx ,

is finite.
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Faedo-Galerkin method

The (approximate) initial boundary value problem will be solved
via a modified Faedo-Galerkin method. We start by introducing
a finite-dimensional space

Xn = span{πj}nj=1, n ∈ {1, 2, . . . }

with πj ∈ D(Ω)N being a set of linearly independent functions
which are dense in C 1

0 (Ω̄,RN).
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The approximate velocities un ∈ C ([0,T ];Xn) satisfy a set of
integral equations of the form∫

Ω
%un(τ) · π dx −

∫
Ω

m0,δ · π =

∫ τ

0

∫
Ω

(%un ⊗ un − Sn) : ∇η + (p(%) + η + δ%β) div π dxdt∫ τ

0

∫
Ω

(ε∇un∇%) · π dxdt,

for any test function π ∈ Xn, all τ ∈ [0,T ].
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The goal is to seek a fixed point

un ∈ C ([0,T ];Xn).

In order to carry this out, we need information on the mappings
assigning each un to unique solutions %, η via the approximate
continuity and Smoluchowski equations.



Models in Continuum Physics

Lecture 3: Construction of approximating problems

Existence for %[un].

Proposition. Let Ω ⊂ RN be a bounded domain of class C 2+ν ,
0 < ν ≤ 1. Suppose that %0,δ ∈ C 2+ν(Ω̄) is positive, and satisfies
the condition

∇x%0,δ · n = 0 on ∂Ω.

Let u→ %[u] assign to any u ∈ C ([0,T ];C 2
0 (Ω̄;R3)) a unique

solution % of the modified fluid density equation. Then this map
takes bounded sets in the space C ([0,T ];C 2

0 (Ω̄;R3)), into
bounded sets of the space

V :=

{
∂t% ∈ C ([0,T ];C ν(Ω̄)

% ∈ C ([0,T ];C 2+ν(Ω̄)

and the map u ∈ C ([0,T ];C 2
0 (Ω̄;R3))→ %[u] ∈ C 1([0,T ]× Ω̄) is

continuous.
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Proposition.

Let Ω ⊂ RN be a bounded domain of class C 2+ν , ν > 0.

Then for any %0,δ and u ∈ C ([0,T ];C ν0 (Ω̄)) there is at most
one weak solution ρ ∈ L2(0,T ;W 1,2(Ω)) of the approximate
problem.

If, in addition, %0,δ belongs to C 2+ν(Ω̄) and satisfies the
(BC), then the approximate problem admits a unique classical
solution %,

% ∈ C ([0,T ];C 2+ν(Ω̄)) ∩ C 1([0,T ];C ν(Ω̄)).



Models in Continuum Physics

Lecture 3: Construction of approximating problems

Furthermore,

(inf
Ω
%0,δ) exp

(
−
∫ τ

0
‖ div un(t)‖L∞dt

)
≤ %(τ, x) ≤ (11)

(sup
Ω
%0,δ) exp

(
−
∫ τ

0
‖ div un(t)‖L∞dt

)
for any τ ≥ 0 and any x ∈ Ω.
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The mapping u→ %[u],

% : C ([0,T ];C 2
0 (Ω̄;RN))→ C ([0,T ];C 2+ν(Ω̄))

maps bounded sets in C ([0,T ];C 2
0 (Ω̄;RN)) into bounded

sets in

C ([0,T ];C 2+ν(Ω̄)) ∩ C 1([0,T ];C ν(Ω̄))

and has the property

‖%(u1)−%(u2)‖C([0,T ];W 1,2(Ω)) ≤ T c(r ,T )‖u1−u2‖
C([0,T ];W 1,2

0 (Ω))
,

for any u1,u2 belonging to the set

Mr = {u ∈ C ([0,T ];W 1,2
0 (Ω)) | ‖u(t)‖L∞(Ω)+‖∇u(t)‖L∞ ≤ r , ∀t}.
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Existence of η[un]

Proposition. Let Ω ⊂ R3 be a bounded domain of class
C 2,ν , 0 < ν ≤ 1. Assume that η0,δ ∈ C 0,ν(Ω̄), and
u ∈ C ([0,T ];C 2

0 (Ω̄;R3)). Let the compatibility condition

(∇xη0,δ(x) + η0,δ(x)∇Φ(x)) · n(x) = 0, x ∈ ∂Ω

be satisfied. Then the Smoluchowski equation has a unique
classical solution η such that η ∈ V . The solution operator
u→ η[u] assigning to any u ∈ C ([0,T ];C 2

0 (Ω̄);R3) the unique
solution of Smoluchowski equation takes bounded sets of
C ([0,T ];C 2

0 (Ω̄;R3)) into bounded sets in V .
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Existence of un

It is now time to establish the local existence of a solution un on a
short interval [0,T (n)] for any fixed n ∈ {1, 2, . . . }. Here, we
express

un(τ) =M−1[%(t)]

(
m∗0,δ +

∫ τ

0
N [un(t), %(t), η(t)] dt

)
.

Now,
M[%] : Xn → X ∗n , N [%] : Xn → X ∗n

are two operators defined by

<M[%]v,w >=

∫
Ω
%π ·w dx ,

< N [un, %, η], π > =

∫
Ω

[%un ⊗ un − S] : ∇π + [p(%) + η + δ%α]divπ dx

−
∫

Ω
[ε∇un∇%+ (β%+ η)∇xΦ] · πdx ,
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respectively, with % = %[un], η = η[un], while X ∗n denotes the dual
space of the finite dimensional space Xn and m∗ ∈ X ∗n is given by

< m∗0,δ, π >=

∫
Ω

m0,δ · π dx for π ∈ Xn.

Next, observe that the Propositions above now yield that

T [u] =M−1[%(t)]

(
m∗0,δ +

∫ τ

0
N [u(t), %(t), ϑ(t)] dt

)
maps compactly the ball

B = {v ∈ C ([0,T ];Xn) |‖v(t)− u0,δ,n‖Xn ≤ 1} ⊂ C ([0,T ];Xn)

into itself at least for a small enough time T = T (n).
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By applying the Schauder fixed point theorem and using the
estimate

‖M−1[%(u1)]−M−1[%(u2)]‖L(X∗n ,Xn) ≤ C (n, n)‖%(u1)−%(u2)‖L1(Ω),

we obtain the existence of at least one solution un on the interval
[0,T (n)].

Theorem (Schauder fixed point theorem)

Let B be a closed, convex, bounded subset of a Banach space X ,
and T : B → B a compact operator. Then T has a fixed point.
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Indeed, it is easy to check that

sup
t∈[0,T ]

‖T [u]− u0,δ,n‖Xn ≤ c sup
t∈[0,T ]

(‖%(t)− %0,δ‖L1(Ω) + t).

Then, the continuity in time for %(t) implies the right-hand side is
made small provided T = T (n) is small. We conclude T maps B
into itself over a short time interval.
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