Nonlinear Conservation Laws in Applied Sciences

2017 Summer School in Nonlinear PDE Lecture 2

Konstantina Trivisa

June, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

ON A FLUIF-PARTICLE INTERACTION MODEL

OUTLINE:

- Modeling
- Energy Estimates
- Notion of Solutions
- Construction of approximate problems
- Main Results: Global-in-time Existence with Large Data
- Challenge: Pass into the limit. Compactness
- Methods: Div-Curl Lemma, Weak continuity of effective viscous pressure, Multipliers technique
- Consequences: Asymptotics, Singular limits

Fluid-Particle Interactions

Fluid-particle interactions arise in many practical applications: biotechnology, medicine, fuel droplets in combustion, sprays etc. Here, we focus on a particular system derived by formal **asymptotics** from a **mesoscopic description**. This is based on a kinetic equation for the particle distribution of **Fokker-Planck type** coupled to fluid equations.

The coupling between the kinetic and the fluid equations: **friction forces** that the fluid and the particles exert mutually.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The cloud of particles is described by its distribution function $f_{\varepsilon}(t, x, \xi)$ on phase space, which is the solution to the dimensionless **Vlasov-Fokker-Planck** equation

$$\bigg|\partial_t f_{\varepsilon} + \frac{1}{\sqrt{\varepsilon}} \Big(\xi \cdot \nabla_x f_{\varepsilon} - \nabla_x \Phi \cdot \nabla_{\xi} f_{\varepsilon} \Big) = \frac{1}{\varepsilon} \operatorname{div}_{\xi} \Big(\big(\xi - \sqrt{\varepsilon} u_{\varepsilon} \big) f + \nabla_{\xi} f_{\varepsilon} \Big).$$

The friction force is assumed to follow **Stokes law** and thus is proportional to the relative velocity vector, i.e., is proportional to the fluctuations of the microscopic velocity $\xi \in \mathbb{R}^3$ around the fluid velocity field **u**.

The RHS of the moment equation in the Navier-Stokes system takes into account the action of the cloud of particles on the fluid through the **forcing term**

$$F_{\varepsilon} = \int_{\mathbb{R}^3} \left(\frac{\xi}{\sqrt{\varepsilon}} - u_{\varepsilon}(t, x) \right) f(t, x, \xi) \, d\xi.$$

The density of the particles $\eta_{\varepsilon}(t, x)$ is related to the probability distribution function $f_{\varepsilon}(t, x, \xi)$ through the relation

$$\eta_{\varepsilon}(t,x) = \int_{\mathbb{R}^3} f_{\varepsilon}(t,x,\xi) \, d\xi.$$

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

$$\partial_t \varrho + \operatorname{div}_x(\varrho \mathbf{u}) = 0$$

$$\partial_t(\varrho \mathbf{u}) + {\operatorname{div}}_x(\varrho(\mathbf{u}\otimes\mathbf{u}) +
abla_x(
ho(\varrho) + \eta) - \mu\Delta\mathbf{u} - \lambda
abla_x\,{\operatorname{div}}_x\,\mathbf{u}$$

$$= -(\eta + \beta \varrho) \nabla \Phi,$$

$$\partial_t \eta + \operatorname{div}(\eta(\mathbf{u} - \nabla \Phi)) - \Delta \eta = 0.$$

$$\varrho = \varrho(t, x) - \text{total mass density} \qquad t - \text{time, } x \in \Omega \subset \mathbb{R}^3$$
 $u = u(t, x) - \text{velocity field}$
 $\eta = \eta(t, x) - \text{the density of the particles}$

$$p(\varrho) = a \varrho^{\gamma} \qquad a > 0, \gamma > 1, \beta \neq 0$$

Φ external potential

$$\mu > 0, \ \lambda + rac{2}{3}\mu \ge 0$$
 viscosity parameters

 $\beta > 0$ if Ω is unbounded

$$\mathbf{u}|_{\partial\Omega} =
abla \eta \cdot \nu + \eta
abla \Phi \cdot \nu = 0 \quad \text{on} \quad (0, T) imes \partial\Omega$$

with ν denoting the outer normal vector to the boundary $\partial \Omega$.

Initial Conditions

 $(\varrho_0, \mathbf{m}_0, \eta_0)$ such that

$$\begin{cases} \varrho(0,x) = \varrho_0 \in L^{\gamma}(\Omega) \cap L^1_+(\Omega), \\ (\varrho \mathbf{u})(0,x) = \mathbf{m}_0 \in L^{\frac{6}{5}}(\Omega) \cap L^1(\Omega), \\ \eta(0,x) = \eta_0 \in L^2(\Omega) \cap L^1_+(\Omega). \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$E(\eta, \varrho, \mathbf{u})(t) :=$$

$$\int_{\Omega} \left[\frac{1}{2}\varrho(t)|\mathbf{u}(t)|^{2} + \frac{a}{\gamma - 1}\varrho^{\gamma}(t) + \overbrace{(\eta \log \eta)(t)}^{Entropy} + \overbrace{(\beta \varrho + \eta)(t)\Phi}^{Potential Energy}\right] dx$$

$$Kinetic Energy$$

At the formal level, the total energy can be viewed as a Lyapunov function satisfying the **energy inequality**

$$\frac{dE}{dt} + \int_{\Omega} \left[\mu |\nabla \mathbf{u}|^2 + \lambda |\operatorname{div} \mathbf{u}|^2 + |2\nabla \sqrt{\eta} + \sqrt{\eta} \nabla \Phi|^2 \right] dx \le 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Confinement hypothesis

Given a domain $\Omega \in C^{2,\nu}$, $\nu > 0$, $\Omega \subset \mathbb{R}^3$, and given a bounded from below external potential $\Phi : \Omega \longrightarrow \mathbb{R}^+_0$ satisfying $\inf_{x \in \Omega} \Phi(x) = 0$ we will say that (Ω, Φ) verifies the confinement hypotheses **(HC)** for the two-phase flow system coupled with no-flux boundary conditions whenever:

- If Ω is bounded, Φ is bounded and Lipschitz continuous in Ω
 and the sub-level sets [Φ < k] are connected in Ω for any
 k > 0.
- If Ω is unbounded, we assume that Φ ∈ W^{1,∞}_{loc}(Ω), β > 0, the sub-level sets [Φ < k] are connected in Ω for any k > 0,

$$e^{-\Phi/2} \in L^1(\Omega),$$

and

$$|\Delta \Phi(x)| \leq c_1 |
abla \Phi(x)| \leq c_2 \Phi(x), |x| > R > 0$$

Examples

The confinement assumption **(HC)** has physical relevance in our setting as it is verified for several domains Ω with Φ being the gravitational potential. For instance,

1 when
$$\Omega = \{x \in \mathbb{R}^3 \mid (x_1, x_2) \in [a, b]^2, x_3 \in [0, H]\}$$
 and $\Phi(x) = gx_3$, where $\beta = 1 - \frac{\varrho_F}{\rho_P}$

2 when

$$\begin{split} \Omega &= \{x \in \mathbb{R}^3 \mid (x_1, x_2) \in [a, b]^2, \, x_3 > 0\} \text{ and } \Phi(x) = g x_3, \\ \text{where } \beta &= 1 - \frac{\varrho_F}{\varrho_P} \text{ and } \varrho_F < \varrho_P. \end{split}$$

(a) when $\Omega = \mathbb{R}^3 \setminus \overline{B(0, R)}$ and $\Phi(x) = g|x|$, where B(0, R) is the ball centered at the origin with radius R and $\beta > 0$.

Here, ϱ_F and ϱ_P are the typical mass density of fluid and particles, respectively. Remark that 1. corresponds to the standard bubbling case in which particles move upwards due to buoyancy.

Derivation of the model

Set up of the model: The particles are viewed as identical spheres of radius R > 0 with a uniform mass density. Assuming a friction force which is proportional to the velocity difference between the particles and the fluid, on a single particle, the fluid produces a frictional force of

$$F(t, x, \xi) = 6\pi\mu R[\mathbf{u}(t, x) - \xi]$$

where μ is the dynamic viscosity of the fluid. Accordingly, the force exerted by the particles on the fluid is given by the sum

$$6\pi\mu R\int_{\mathbb{R}^3} [\mathbf{u}(t,x)-\xi] fd\xi.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The particles move under the influence of Brownian motion, resulting in diffusion in ξ . Here the diffusion coefficient is given by

$$D = \frac{k\theta}{m_P} \frac{6\pi\mu R}{m_P} = \frac{k\theta}{m_P} \frac{9\mu}{2R^2\varrho_F}$$

where

- ρ_P is the constant mass density of each particle,
- m_P is the total mass of each particle,
- k is the Boltzmann constant, and
- θ is the constant temperature of the system.

Remark.

Here

$$\mathcal{T}_{s} = \frac{m_{P}}{6\pi\mu R} = \frac{2R^{2}\varrho_{P}}{9\mu}$$

is the natural relaxation time for the kinetic equation usually referred in these applications as the **Stokes settling time**. We consider as usual

$$\mathcal{V}_{th} = \sqrt{rac{k heta}{m_P}}$$

as the measure of the *fluctuation of particles velocity*, called their **thermal speed**.

In light of this setup, the equations for the unknowns $\varrho,\,{\bf u},$ and f read

$$\begin{cases} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0 \\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\varrho) = -\beta \varrho \nabla \Phi + \frac{6\pi \mu R}{\varrho_F} \int_{\mathbb{R}^3} (\xi - \mathbf{u}) f \, \mathrm{d}\xi \\ \partial_t f + \xi \cdot \nabla f - \nabla \Phi \cdot \nabla_\xi f = \frac{9\mu}{2R^2 \varrho_P} \operatorname{div}_\xi \left[(\xi - \mathbf{u}) f + \frac{k\theta}{m_P} \nabla_\xi f \right]. \end{cases}$$
(1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Taking unitless parameters and defining

$$\varepsilon = \frac{\mathcal{T}_s}{T}$$

the ratio of the Stokes settling time for microscopic diffusion (denoted T_s) and the characteristic time (denoted T) we obtain:

$$\partial_t \varrho_{\varepsilon} + \operatorname{div}_x(\varrho_{\varepsilon} \mathbf{u}_{\varepsilon}) = 0$$
 (2)

$$\partial_{t}(\varrho_{\varepsilon}\mathbf{u}_{\varepsilon}) + \operatorname{div}_{x}(\varrho_{\varepsilon}\mathbf{u}_{\varepsilon}\otimes\mathbf{u}_{\varepsilon}) + \nabla_{x}(\rho(\varrho_{\varepsilon})) \tag{3}$$
$$= -\beta\varrho_{\varepsilon}\nabla_{x}\Phi + \int_{\mathbb{R}^{3}}\left(\frac{\xi}{\sqrt{\varepsilon}} - \mathbf{u}_{\varepsilon}\right)f_{\varepsilon}\mathrm{d}\xi$$
$$\partial_{t}f_{\varepsilon} + \frac{1}{\sqrt{\varepsilon}}(\xi\cdot\nabla_{x}f_{\varepsilon} + \nabla_{x}\Phi\cdot\nabla_{\xi}f_{\varepsilon}) = \frac{1}{\varepsilon}\operatorname{div}_{\xi}[(\xi - \sqrt{\varepsilon}\mathbf{u}_{\varepsilon})f_{\varepsilon} + \nabla_{\xi}f_{\varepsilon}]. \tag{4}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

In the mesoscopic model (2)-(4), ϱ_{ε} is the fluid density, \mathbf{u}_{ε} is the fluid velocity field, and f_{ε} is the mesoscopic particle density, the three of which are the unknowns. In light of Newton's Third Law, the quantity

$$\int_{\mathbb{R}^3} \left(\frac{\xi}{\sqrt{\varepsilon}} - \mathbf{u}_{\varepsilon} \right) f_{\varepsilon} \, \mathrm{d}\xi$$

represents the frictional force exerted by the particles on the fluid. The macroscopic particle density η_{ε} is related to the mesoscopic particle density f_{ε} by the relation

$$\eta_{\varepsilon}(x,t) = \int_{\mathbb{R}^3} f_{\varepsilon}(x,\xi,t) d\xi.$$
 (5)

To derive the NSS system from (2)-(4), the asymptotic limit $\varepsilon \rightarrow 0$ is taken, representing that the **Stokes settling time** becomes **negligible** compared to the **characteristic time scale** under consideration. Indeed, following the formal analysis in Carrillo and Goudon (2006) and denoting the first and second moments of f_{ε} as

$$J_{arepsilon}(x,t) := \int_{\mathbb{R}^3} rac{1}{\sqrt{arepsilon}} \xi f_{arepsilon}(x,t,\xi) \; \mathrm{d} \xi$$

and

$$\mathbb{P}_{\varepsilon}(x,t) := \int_{\mathbb{R}^3} \xi \otimes \xi f_{\varepsilon}(x,t,\xi) \, \mathrm{d}\xi,$$

respectively, the following equations for the moments are obtained using (4):

$$\partial_t \eta_{\varepsilon} + \operatorname{div} J_{\varepsilon} = 0$$
 (6)

$$\varepsilon \partial_t J_{\varepsilon} + \operatorname{div} \mathbb{P}_{\varepsilon} + \eta_{\varepsilon} \nabla \Phi = -(J_{\varepsilon} - \eta_{\varepsilon} \mathbf{u}_{\varepsilon}).$$
(7)

Taking $\varepsilon \to 0$ and integrating (7) over \mathbb{R}^3 yields formally

$$\nabla \eta + \eta \nabla \Phi = -J + \eta \mathbf{u}. \tag{8}$$

Inserting this into (6) and taking the limit yields the Smoluchowski equation.

$$\partial_t \eta + \operatorname{div}(\eta(\mathbf{u} - \nabla \Phi)) - \Delta \eta = 0.$$

Variational Formulation

- Derivatives \sim in the sense of distributions
- Equations \sim family of integral identities

Approach

- collect all available a priori estimates
- construct a sequence of approximate problems whose solutions satisfy these estimate
- show that the sequence of approximate slns converges to solution of the original problem.

$$E(\eta, \varrho, \mathbf{u})(t) :=$$

$$\int_{\Omega} \left[\frac{1}{2}\varrho(t)|\mathbf{u}(t)|^{2} + \frac{a}{\gamma - 1}\varrho^{\gamma}(t) + \overbrace{(\eta \log \eta)(t)}^{Entropy} + \overbrace{(\beta \varrho + \eta)(t)\Phi}^{Potential Energy}\right] dx$$

$$Kinetic Energy$$

At the formal level, the total energy can be viewed as a Lyapunov function satisfying the **energy inequality**

$$\frac{dE}{dt} + \int_{\Omega} \left[\mu |\nabla \mathbf{u}|^2 + \lambda |\operatorname{div} \mathbf{u}|^2 + |2\nabla \sqrt{\eta} + \sqrt{\eta} \nabla \Phi|^2 \right] dx \le 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

How do we derive the energy inequality?

We compute the time derivative of each component in the energy.

$$\partial_t \left(rac{1}{2} arrho(t) |\mathbf{u}(t)|^2
ight) = ?$$

Multiplying the momentum equation by **u**:

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \varrho(t) |\mathbf{u}(t)|^2 \right) + \operatorname{div} \left(\frac{1}{2} \varrho(t) |\mathbf{u}(t)|^2 \mathbf{u} \right)$$

$$+\operatorname{div}(\varrho^{\gamma}\mathbf{u}) - \varrho^{\gamma}\operatorname{div}\mathbf{u} + \operatorname{div}(\eta\mathbf{u}) - \eta\operatorname{div}\mathbf{u} =$$
$$\mu\mathbf{u}\Delta\mathbf{u} + \lambda\mathbf{u}\nabla\operatorname{div}\mathbf{u} - (\eta + \beta\varrho)\mathbf{u}\nabla\Phi$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How do we derive the energy inequality?

We compute the time derivative of each component in the energy.

$$\partial_t \left(rac{1}{2} arrho(t) |\mathbf{u}(t)|^2
ight) = ?$$

Multiplying the momentum equation by **u**:

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \varrho(t) |\mathbf{u}(t)|^2 \right) + \operatorname{div} \left(\frac{1}{2} \varrho(t) |\mathbf{u}(t)^2 \mathbf{u} \right) + \frac{\mathbf{u}^2}{2} [\partial_t \varrho + \operatorname{div}_x(\varrho \mathbf{u})]$$

$$+\operatorname{div}(\varrho^{\gamma}\mathbf{u}) - \varrho^{\gamma}\operatorname{div}\mathbf{u} + \operatorname{div}(\eta\mathbf{u}) - \eta\operatorname{div}\mathbf{u} =$$
$$\mu\mathbf{u}\Delta\mathbf{u} + \lambda\mathbf{u}\nabla\operatorname{div}\mathbf{u} - (\eta + \beta\varrho)\mathbf{u}\nabla\Phi$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

$$\frac{\partial}{\partial t}\left(\beta(\varrho)\right) = ?$$

Multiplying the continuity equation by $(\beta(\varrho))'$:

(

$$\frac{\partial}{\partial t} (\beta(\varrho))) + \operatorname{div} (\beta(\varrho)\mathbf{u}) -? = 0$$
$$\operatorname{div} (\beta(\varrho)\mathbf{u}) = \beta'(\varrho)\nabla \varrho \,\mathbf{u} + \beta(\varrho)\operatorname{div} \mathbf{u}$$
$$\operatorname{div} (\beta(\varrho)\mathbf{u}) = \beta'(\varrho)\operatorname{div} (\varrho \mathbf{u}) - \beta'(\varrho)\varrho\operatorname{div} \mathbf{u} + \beta(\varrho)\operatorname{div} \mathbf{u}$$

$$\frac{\partial}{\partial t}(\beta(\varrho))) + \operatorname{div}(\beta(\varrho)\mathbf{u}) + \left[\beta'(\varrho)\varrho - \beta(\varrho)\right]\operatorname{div}\mathbf{u} = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\frac{\partial}{\partial t} \left(\frac{a \varrho^{\gamma}}{\gamma - 1} \right) = ?$$

Multiplying the continuity equation by $(\varrho^{\gamma})'$:

$$rac{\partial}{\partial t}\left(arrho^{\gamma}
ight)+ ext{div}\left(arrho^{\gamma} extbf{u}
ight)+arrho^{\gamma}(\gamma-1)\, ext{div}\, extbf{u}=0$$

Indeed:

$$[\beta'(\varrho)\varrho - \beta(\varrho)] = \gamma \varrho^{\gamma-1} \varrho - \varrho^{\gamma} = (\gamma - 1)\varrho^{\gamma}$$

Dividing by $(\gamma - 1)$:

$$\boxed{\frac{\partial}{\partial t} \left(\frac{\varrho^{\gamma}}{\gamma - 1}\right) + \operatorname{div} \left(\frac{\varrho^{\gamma}}{\gamma - 1}\mathbf{u}\right) + \varrho^{\gamma} \operatorname{div} \mathbf{u} = 0}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\partial_t \left(\eta \log \eta \right) = ?$$

Multiplying Smoluchowski equation by $(\eta \log \eta)'$:

 $\left| \frac{\partial}{\partial t} \left(\eta \log \eta \right) + \operatorname{div} \left(\eta \log \eta \mathbf{u} \right) + \eta \operatorname{div} \mathbf{u} = (\log \eta + 1) \Delta \eta \right|$

$$\frac{d}{dt}\left(\beta\varrho+\eta\right)(t)\Phi(x)=?$$

$$\frac{d}{dt}\left(\beta\varrho+\eta\right)\Phi=\operatorname{div}\left[-(\beta\varrho+\eta)\mathbf{u}\right]\Phi-\operatorname{div}(\eta\nabla\Phi)\Phi-\Delta\eta\Phi.$$

Adding the above relations, applying integration by parts and using the boundary conditions we obtain:

$$\begin{split} E(\varrho,\mathbf{u},\eta)(t) + \int_0^t \int_\Omega \Big[\mu |\nabla \mathbf{u}|^2 + \lambda |\operatorname{div} \mathbf{u}|^2 + |2\nabla \sqrt{\eta} + \sqrt{\eta} \nabla \Phi|^2 \Big] dx ds \\ = E(\varrho,\mathbf{u},\eta)(0). \end{split}$$

with

$$E(t) := \int_{\Omega} \left[\frac{1}{2} \varrho |\mathbf{u}|^2 + \frac{a}{\gamma - 1} \varrho^{\gamma} + (\eta \log \eta) + (\beta \varrho + \eta) \Phi \right] dx$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

It is reasonable to anticipate that, at least for some sequences $t_n \to \infty$,

$$\eta(t_n) \to \eta_s, \ \varrho(t_n) \to \varrho_s, \ \varrho \mathbf{u}(t_n) \to 0$$

₩

where η_s, ϱ_s satisfy the stationary problem

$$abla(
ho(arrho_s)+\eta_s)=-(\eta_s+etaarrho_s)
abla \Phi$$
 on Ω

The energy estimate written in the form

$$E(t) + \int_0^T (\|\nabla \mathbf{u}\|_{L^2}^2 + \|\operatorname{div} \mathbf{u}\|_{L^2}^2) dt + \int_0^T \int_\Omega |2\nabla \sqrt{\eta} + \sqrt{\eta} \nabla \Phi|^2 dt$$
$$\leq E(0)$$

$$|2\nabla\sqrt{\eta_s} + \sqrt{\eta_s}\nabla\Phi|^2 = 0$$

The aim of this paper is to show that, in fact, any weak solution converges to a fixed stationary state as time goes to infinity, more precisely,

$$\begin{split} \varrho(t) &
ightarrow arrho_{s} & ext{strongly in} & L^{\gamma}(\Omega), \\ & ext{ess}\sup_{\tau > t} \int_{\Omega} \varrho(\tau) |\mathbf{u}(\tau)|^{2}
ightarrow \mathbf{0}, \\ & \eta(t) &
ightarrow \eta_{s} & ext{strongly in} & L^{p}(\Omega), \end{split}$$

as $t \to \infty$ under the **confinement hypothesis** on the domain Ω .

The steady state (ρ_s, η_s) are determined by

$$\begin{cases} \nabla p(\varrho_s) = -\beta \varrho_s \nabla \Phi, & \int_{\Omega} (\varrho_s, \eta_s) \, dx = \int_{\Omega} (\varrho_0, \eta_0) \, dx, \\ \nabla \eta_s = -\eta_s \nabla \Phi, & \int_{\Omega} (\varrho_s, \eta_s) \, dx = \int_{\Omega} (\varrho_0, \eta_0) \, dx, \end{cases}$$

and are given by the formulas

$$\varrho_{s} = \left(\frac{\gamma - 1}{a\gamma}\left[-\beta\Phi + C_{\varrho}\right]^{+}\right)^{\frac{1}{\gamma - 1}} \qquad \eta_{s} = C_{\eta}\exp(-\Phi),$$

where C_{η} and C_{ϱ} are uniquely given by the initial masses.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

How do we find the appropriate space setting?

Assume smooth solutions. By integrating the continuity equation in space and time:

Bound of Energy implies:

$$\begin{split} \varrho \in L^{\infty}([0, T]; L^{\gamma}(\Omega)) \\ \frac{1}{2} \varrho |\mathbf{u}|^{2} \in L^{\infty}([0, T]; L^{1}(\Omega)) \Rightarrow \sqrt{\varrho} |\mathbf{u}| \in L^{\infty}([0, T]; L^{2}(\Omega)) \\ \varrho \mathbf{u} \in L^{\infty}([0, T]; L^{\frac{2\gamma}{\gamma+1}}(\Omega; \mathbb{R}^{3}) \end{split}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Bound of Energy implies (cont.):

$$\begin{split} \textbf{u} \in L^2(0,\,\mathcal{T};\, W^{1,2}_0(\Omega;\,\mathbb{R}^3)) \\ \Downarrow \end{split}$$

 \boldsymbol{u} satisfy the boundary condition in the sense of traces

$$\eta \log \eta \in L^{\infty}([0, T]; L^{1}(\Omega))$$

 $\eta \in L^{2}([0, T]; L^{3/2}(\Omega)) \cap L^{1}(0, T; W^{1, \frac{3}{2}}(\Omega))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The energy inequality yields

$$2\nabla_x\sqrt{\eta}+\sqrt{n}\nabla_x\Phi\in L^2(0,\,T;\,L^2(\Omega;\,\mathbb{R}^3)).$$

Since $\eta \in L^{\infty}(0, T; L^{1}(\Omega))$ and $\nabla_{x} \Phi$ is uniformly bounded

$$\downarrow$$
 $abla_x \sqrt{\eta} \in L^2(0, T; L^2(\Omega; \mathbb{R}^3)),$

and so

$$\sqrt{\eta} \in L^2(0, T; W^{1,2}(\Omega)) \hookrightarrow L^2(0, T; L^6(\Omega)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Using these estimates, the quantity

$$\nabla_{\mathsf{x}}\eta=2\sqrt{\eta}\nabla_{\mathsf{x}}\sqrt{\eta},$$

and Hölder's inequality the particle density η satisfies

$$\eta \in L^1(0, T; W^{1,3/2}(\Omega)) \hookrightarrow L^1(0, T; L^3(\Omega)),$$
$$\eta \in L^2(0, T; W^{1,1}(\Omega)) \hookrightarrow L^2(0, T; L^{3/2}(\Omega)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\partial_t \varrho + \operatorname{div}_x(\varrho \mathbf{u}) = 0$$

$$\partial_t(\varrho \mathbf{u}) + \operatorname{div}_x(\varrho(\mathbf{u} \otimes \mathbf{u}) + \nabla_x(\rho(\varrho) + \eta) - \mu \Delta \mathbf{u} - \lambda \nabla_x \operatorname{div}_x \mathbf{u}$$

$$= -(\eta + \beta \varrho) \nabla \Phi,$$

$$\partial_t \eta + \operatorname{div}(\eta(\mathbf{u} - \nabla \Phi)) - \Delta \eta = 0.$$

$$\mathbf{u}|_{\partial\Omega} = \nabla \eta \cdot \nu + \eta \nabla \Phi \cdot \nu = 0 \text{ on } (0, T) \times \partial \Omega$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Strategy

Variational Formulation

- Derivatives \sim in the sense of distributions
- Equations \sim family of integral identities

Approach

- collect all available a priori estimates
- construct a sequence of approximate problems whose solutions satisfy these estimate
- show that the sequence of approximate slns converges to solution of the original problem.

Weak solutions

The idea of weak solutions is based on the concept of *generalized derivatives* or distibutions. Classical functions are replaced by *integral averages*

$$f: Q \to R \approx \int_Q f \varphi, \ \varphi \in C^\infty_c(Q).$$

 $C_c^{\infty}(Q)$ denotes the set of infinitely differentiable functions with compact support in Q.

Differential operators D can be conveniently expressed by means of a formal by-parts integration:

$$Df \approx -\int_{Q} f D\varphi, \ \varphi \in C^{\infty}_{c}(Q).$$

 \parallel

Any (localy) integrable function possesses derivatives of arbitrary order!

Renormalized solutions

Multiplying the continuity equation by $(B'(\varrho))$:

$$\frac{\partial}{\partial t} \left(B(\varrho) \right) + \operatorname{div} \left(B(\varrho) \mathbf{u} \right) + b(\varrho) \operatorname{div}_{\mathsf{x}} \mathbf{u} = 0 \tag{9}$$

where

$$b(z) = B'(z)z - B(z)$$
 (10)

Definition

We say that ρ and **u** is a renormalized solution of the continuity equation on $(0, T) \times \Omega$ if (9) holds in $\mathcal{D}'((0, T) \times \Omega)$ for any functions

$$B\in {\mathcal C}[0,\infty)\cap {\mathcal C}^1(0,\infty),\,b\in {\mathcal C}[0,\infty)$$
 bounded on $[0,\infty),$

B(0)=b(0)-0

satisfying (9)-(10) for all z > 0.

Free energy solutions

 $\{\varrho, \mathbf{u}, \eta\}$ is an admissible free energy solution of Problem D, supplemented with the initial data $\{\varrho_0, \mathbf{u}_0, \eta_0\}$ provided that

Q ≥ 0, **u** is a **renormalized** solution of the continuity equation, that is,

$$\int_0^T \int_\Omega \left(\varrho B(\varrho) \partial_t \varphi + \varrho B(\varrho) \mathbf{u} \cdot \nabla_x \varphi - b(\varrho) \operatorname{div} \mathbf{u} \varphi \right) dx dt$$
$$= -\int_\Omega \varrho_0 B(\varrho_0) \varphi(0, \cdot) dx$$

holds for any test function $\varphi \in \mathcal{D}([0, T) \times \overline{\Omega})$ and suitable *b* and *B*.

The balance of momentum holds in distributional sense. The velocity field **u** belongs to the space L²(0, T; W^{1,2}(Ω; R³)), therefore it is legitimate to require **u** to satisfy the boundary conditions in the sense of traces.

Lecture 2: Notion of weak solutions

• $\eta \geq 0$ is a weak solution of the Smoluchowski equation. That is,

$$\int_{0}^{\infty} \int_{\Omega} \eta \partial_{t} \varphi + \eta \mathbf{u} \cdot \nabla \varphi - \eta \nabla \Phi \cdot \nabla \varphi - \nabla \eta \nabla \varphi dx dt$$
$$= -\int_{\Omega} \eta_{0} \varphi(0, \cdot) dx$$

is satisfied for test functions $\varphi \in \mathcal{D}([0, T) \times \overline{\Omega})$ and any T > 0. In particular,

$$\eta \in L^2([0, T]; L^{3/2}(\Omega)) \cap L^1(0, T; W^{1, \frac{3}{2}}(\Omega))$$

Lecture 2: Notion of weak solutions

• Given the total free-energy of the system by

$$\mathsf{E}(arrho, \mathbf{u}, \eta)(t) := \int_\Omega igg(rac{1}{2}arrho |\mathbf{u}|^2 + rac{a}{\gamma-1}arrho^\gamma + \eta\log\eta + (etaarrho + \eta) \Phiigg),$$

then $E(\varrho, \mathbf{u}, \eta)(t)$ is finite and bounded by the initial energy of the system

$$E(arrho,\mathbf{u},\eta)(t)\leq E(arrho_0,\mathbf{u}_0,\eta_0)$$
 a.e. $t>0$

Moreover, the following free energy-dissipation inequality holds

$$\begin{split} \int_0^\infty & \int_\Omega \left(\mu |\nabla \mathbf{u}|^2 + \lambda |\operatorname{div} \mathbf{u}|^2 + |2\nabla \sqrt{\eta} + \sqrt{\eta} \nabla \Phi|^2 \right) \, dt \\ & \leq E(\varrho_0, \mathbf{u}_0, \eta_0) \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Let $\Omega \subset \mathbb{R}^3$ bounded domain and (Ω, Φ) satisfy the confinement hypotheses **(HC)**. Then, **Problem D** admits a weak solution $\{\varrho, \mathbf{u}, \eta\}$ on $(0, \infty) \times \Omega$. In addition,

i) the total fluid mass and particle mass given by

$$M_arrho(t) = \int_\Omega arrho(t,\cdot) \; dx \qquad ext{and} \qquad M_\eta(t) = \int_\Omega \eta(t,\cdot) \; dx,$$

respectively, are constants of motion.

ii) the density satisfies the higher integrability result

 $\varrho \in L^{\gamma+\Theta}((0, T) \times \Omega)$, for any T > 0,

where $\Theta = \min\{\frac{2}{3}\gamma - 1, \frac{1}{4}\}.$

Theorem

Let us assume that (Ω, Φ) satisfy the confinement hypotheses **(HC)**. Then, for any free-energy solution $(\varrho, \mathbf{u}, \eta)$ of the **Problem D**, there exist universal stationary states $\varrho_s(x)$, $\eta_s(x)$, such that

$$\left\{ egin{array}{ll} arrho(t)
ightarrow arrho_s \ ext{ strongly in } L^\gamma(\Omega), \ & \displaystyle ext{ ess sup } \int_\Omega arrho(au) | \mathbf{u}(au) |^2 \ dx
ightarrow 0, \ & \displaystyle \eta(t)
ightarrow \eta_s \ & \displaystyle ext{ strongly in } L^{p_2}(\Omega) \ & \displaystyle ext{for } p_2 > 1, \end{array}
ight.$$

as $t \to \infty$, where (η_s, ϱ_s) are characterized as the unique free-energy solution of the stationary state problem:

Lecture 2: Main results

$$\begin{cases} \nabla p(\varrho_s) = -\beta \varrho_s \nabla \Phi, & \int_{\Omega} (\varrho_s, \eta_s) \, dx = \int_{\Omega} (\varrho_0, \eta_0) \, dx, \\ \nabla \eta_s = -\eta_s \nabla \Phi, & \int_{\Omega} (\varrho_s, \eta_s) \, dx = \int_{\Omega} (\varrho_0, \eta_0) \, dx, \end{cases}$$

given by the formulas

$$\varrho_s = \left(\frac{\gamma - 1}{a\gamma} \left[-\beta \Phi + C_{\varrho}\right]^+\right)^{\frac{1}{\gamma - 1}} \qquad \eta_s = C_{\eta} \exp(-\Phi),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where C_{η} and C_{ϱ} are uniquely given by the initial masses.

Remark:

We need to show that the sequences (ρ_n, η_n) of the time shifts defined as

$$\begin{split} \varrho_n(t,x) &:= \varrho(t+\tau_n,x), \ \tau_n \to \infty, \\ \eta_n(t,x) &:= \eta(t+\tau_n,x), \ \tau_n \to \infty, \end{split}$$

contain subsequences, denoted by the same index w.l.o.g., such that

$$arrho_{m{n}} o arrho_{m{s}} \hspace{0.5cm} ext{strongly in} \hspace{0.5cm} L^1_{loc}((0,1) imes \Omega)$$

and

 $\eta_n \to \eta_s$ strongly in $L^{p_1}((0, T); L^{p_2})(\Omega)$ for some $p_1, p_2 > 1$,

How do we construct suitable approximating problems?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An approximation scheme based on time-descretization

Reference: Carrillo, Karper, Trivisa, Nonlinear Analysis (2011)

Let $\delta > 0$ be fixed. Given a time step h > 0, we discretize the time interval [0, T] in terms of the points $t^k = kh$, k = 0, ..., M, with Mh = T. Now, we sequentially determine functions

$$\{\varrho_{\delta,h}^k, \mathbf{u}_{\delta,h}^k, \eta_{\delta,h}^k\} \in \mathcal{W}(\Omega), \quad k = 1, \dots, M,$$

such that:

• The time discretized continuity equation,

$$d_t^h[\varrho_{\delta,h}^k] + \operatorname{div}(\varrho_{\delta,h}^k \mathbf{u}_{\delta,h}^k) = 0,$$

holds in the sense of distributions on $\overline{\Omega}$.

The time discretized momentum equation with artificial pressure,

$$\begin{aligned} d_t^h[\varrho_{\delta,h}^k \mathbf{u}_{\delta,h}^k] + \operatorname{div}(\varrho_{\delta,h}^k \mathbf{u}_{\delta,h}^k \otimes \mathbf{u}_{\delta,h}^k) - \mu \Delta \mathbf{u}_{\delta,h}^k - \lambda \nabla \operatorname{div} \mathbf{u}_{\delta,h}^k \\ + \nabla \left(p_{\delta}(\varrho_{\delta,h}^k) + \eta_{\delta,h}^k \right) &= -(\beta \varrho_{\delta,h}^k + \eta_{\delta,h}^k) \nabla \Phi \end{aligned}$$

holds in the sense of distributions on $\boldsymbol{\Omega}$

• The time discretized particle density equation,

$$d_t^h[\eta_{\delta,h}^k] + \operatorname{div}\left(\eta_{\delta,h}^k(\mathbf{u}_{\delta,h}^k - \nabla\Phi)\right) - \Delta\eta_{\delta,h}^k = 0,$$

holds in the sense of distributions on $\overline{\Omega}$.

In the above equations, $d_t^h[\phi^k] = \frac{\phi^k - \phi^{k-1}}{h}$ denotes implicit time stepping.

• There exists an artificial pressure solution $(h \rightarrow 0)$.

• Vanishing artificial pressure limit ($\delta \rightarrow 0$).

An approximating scheme with the aid of Faedo-Galerkin approximations

Here the aproximate solutions are constructed using a three-level approximation scheme. Let X_n for $n \in \mathbb{N}$ denote a family of finite dimensional spaces consisting of smooth vector-valued functions on $\overline{\Omega}$ vanishing of $\partial\Omega$.

Two different types of regularizations are introduced:

- The ε-regularizations are included to guarantee that certain a priori estimates hold true while the energy inequality remains valid at each level of the approximation.
- **2** The δ -regularization introduces an artificial pressure which is essential in obtaining the convergence result.

Thus, we consider the approximate system:

$$\partial_t \varrho_n + \operatorname{div}(\varrho_n \mathbf{u}_n) = \varepsilon \Delta \varrho_n$$
$$\partial_t \eta_n + \operatorname{div}(\eta_n(\mathbf{u}_n - \nabla \Phi)) = \Delta \eta_n$$
$$\int_{\Omega} \partial_t(\varrho_n \mathbf{u}_n) \cdot \mathbf{w} \, dx = \int_{\Omega} \varrho_n \mathbf{u}_n \otimes \mathbf{u}_n : \nabla \mathbf{w} + (a\varrho_n^{\gamma} + \eta_n + \delta \varrho_n^{\alpha}) \operatorname{div} \mathbf{w} \, dx$$
$$- \int_{\Omega} \mathbb{S}(\nabla \mathbf{u}) : \nabla \mathbf{w} + \varepsilon \nabla \varrho_n \cdot \nabla \mathbf{u}_n \cdot \mathbf{w} \, dx - \int_{\Omega} (\eta_n \varrho_n + \eta_n) \nabla \Phi \cdot \mathbf{w} \, dx$$

for any $\mathbf{w} \in X_n$, where X_n is a finite dimensional space and α is suitably large exponent.

Boundary conditions

$$\nabla_{x} \varrho \cdot \mathbf{n} = 0, \ \mathbf{u}_{n} = (\nabla_{x} \eta_{n} + \eta_{n} \nabla_{x} \Phi) \cdot \mathbf{n} = 0 \text{ on } (0, T) \times \partial \Omega$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Here, $\varepsilon, \delta > 0$ are small and α is an appropriate constant. The approximation scheme is also supplemented by the approximate initial data $\{\varrho_{0,\delta}, \mathbf{m}_{0,\delta}, \eta_{0,\delta}\}$. The approximate initial data are modifications of the original initial data in that

- $0 < \delta \leq \varrho_{0,\delta} \leq \delta^{-1/2\alpha}$ for all $x \in \Omega$, $\varrho_{0,\delta} \to \varrho_0$ in $L^{\gamma}(\Omega)$, and $|\{x \in \Omega | \varrho_{0,\delta}(x) < \varrho_0(x)\}| \to 0$ as $\delta \to 0$.
- $\mathbf{m}_{0,\delta}(x)$ is the same as $\mathbf{m}_0(x)$ unless $\varrho_{0,\delta}(x) < \varrho_0(x)$, in which case $\mathbf{m}_{0,\delta}(x) = 0$.

• $0 < \delta \leq \eta_{0,\delta} \leq \delta^{-1/2\alpha}$ for all $x \in \Omega$, $\eta_{0,\delta} \to \eta_0$ in $L^2(\Omega)$, and $|\{x \in \Omega | \eta_{0,\delta}(x) < \eta_0(x)\}| \to 0$ as $\delta \to 0$.

Motivation

The approximating system is motivated as follows.

- The continuity equation contains the additional Laplacian term εΔρ, known as vanishing viscosity, in order to increase the regularity of the density ρ and obtain strong compactness of the density at the first level of the approximation.
- In order to keep the energy estimate satisfied, the ε∇_xu∇_xρ term in the modified momentum equation is introduced to balance the vanishing viscosity term.
- Finally, the δ_ℓ^α term in the momentum equation serves to increase the integrability of the pressure during the first two levels of approximation. This is called the artificial pressure.

Here, $\varepsilon, \delta > 0$ are small and α is an appropriate constant. The approximation scheme is also supplemented by the approximate initial data $\{\varrho_{0,\delta}, \mathbf{m}_{0,\delta}, \eta_{0,\delta}\}$. The approximate initial data are modifications of the original initial data in that

- $0 < \delta \leq \varrho_{0,\delta} \leq \delta^{-1/2\alpha}$ for all $x \in \Omega$, $\varrho_{0,\delta} \to \varrho_0$ in $L^{\gamma}(\Omega)$, and $|\{x \in \Omega | \varrho_{0,\delta}(x) < \varrho_0(x)\}| \to 0$ as $\delta \to 0$.
- $\mathbf{m}_{0,\delta}(x)$ is the same as $\mathbf{m}_0(x)$ unless $\varrho_{0,\delta}(x) < \varrho_0(x)$, in which case $\mathbf{m}_{0,\delta}(x) = 0$.

• $0 < \delta \leq \eta_{0,\delta} \leq \delta^{-1/2\alpha}$ for all $x \in \Omega$, $\eta_{0,\delta} \to \eta_0$ in $L^2(\Omega)$, and $|\{x \in \Omega | \eta_{0,\delta}(x) < \eta_0(x)\}| \to 0$ as $\delta \to 0$.

In part, these hypotheses ensure that the initial energy

$$E(0) = E_{\delta}(0) :=$$

$$\int_{\Omega} \left(\frac{1}{2} \frac{|\mathbf{m}_{\mathbf{0},\delta}|^2}{\varrho_0} + \frac{\delta}{\alpha - 1} \varrho_{\mathbf{0},\delta}^{\alpha} + \eta_{\mathbf{0},\delta} \log \eta_{\mathbf{0},\delta} + (\beta \varrho_{\mathbf{0},\delta} + \eta_{\mathbf{0},\delta}) \Phi \right) dx,$$

is finite.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Faedo-Galerkin method

The (approximate) initial boundary value problem will be solved via a modified **Faedo-Galerkin method**. We start by introducing a finite-dimensional space

$$X_n = \operatorname{span} \{\pi_j\}_{j=1}^n, \qquad n \in \{1, 2, \dots\}$$

with $\pi_j \in \mathcal{D}(\Omega)^N$ being a set of linearly independent functions which are dense in $C_0^1(\bar{\Omega}, \mathbb{R}^N)$.

The approximate velocities $\mathbf{u}_n \in C([0, T]; X_n)$ satisfy a set of integral equations of the form

$$\int_{\Omega} \rho \mathbf{u}_{n}(\tau) \cdot \pi \, d\mathbf{x} - \int_{\Omega} \mathbf{m}_{0,\delta} \cdot \pi =$$
$$\int_{0}^{\tau} \int_{\Omega} (\rho \mathbf{u}_{n} \otimes \mathbf{u}_{n} - \mathbb{S}_{n}) : \nabla \eta + (p(\rho) + \eta + \delta \rho^{\beta}) \operatorname{div} \pi \, d\mathbf{x} dt$$
$$\int_{0}^{\tau} \int_{\Omega} (\varepsilon \nabla \mathbf{u}_{n} \nabla \rho) \cdot \pi \, d\mathbf{x} dt,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

for any test function $\pi \in X_n$, all $\tau \in [0, T]$.

The goal is to seek a fixed point

$$\mathbf{u}_n \in C([0, T]; X_n).$$

In order to carry this out, we need information on the mappings assigning each \mathbf{u}_n to unique solutions ϱ, η via the approximate continuity and Smoluchowski equations.

Existence for $\varrho[u_n]$.

Proposition. Let $\Omega \subset \mathbb{R}^N$ be a bounded domain of class $C^{2+\nu}$, $0 < \nu \leq 1$. Suppose that $\varrho_{0,\delta} \in C^{2+\nu}(\bar{\Omega})$ is positive, and satisfies the condition

$$\nabla_{\mathbf{x}}\varrho_{\mathbf{0},\delta}\cdot\mathbf{n}=0$$
 on $\partial\Omega$.

Let $\mathbf{u} \to \varrho[\mathbf{u}]$ assign to any $\mathbf{u} \in C([0, T]; C_0^2(\bar{\Omega}; \mathbb{R}^3))$ a unique solution ϱ of the modified fluid density equation. Then this map takes **bounded sets** in the space $C([0, T]; C_0^2(\bar{\Omega}; \mathbb{R}^3))$, into **bounded sets** of the space

$$\mathcal{V} := \left\{ egin{array}{l} \partial_t arrho \in \mathcal{C}([0,T];\mathcal{C}^
u(ar\Omega)) \ arrho \in \mathcal{C}([0,T];\mathcal{C}^{2+
u}(ar\Omega)) \end{array}
ight.$$

and the map $\mathbf{u} \in C([0, T]; C_0^2(\overline{\Omega}; \mathbb{R}^3)) \to \varrho[\mathbf{u}] \in C^1([0, T] \times \overline{\Omega})$ is continuous.

Proposition.

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain of class $C^{2+\nu}, \nu > 0$.

Then for any ρ_{0,δ} and **u** ∈ C([0, T]; C₀^ν(Ω
)) there is at most one weak solution ρ ∈ L²(0, T; W^{1,2}(Ω)) of the approximate problem.

If, in addition, $\rho_{0,\delta}$ belongs to $C^{2+\nu}(\bar{\Omega})$ and satisfies the **(BC)**, then the approximate problem admits a unique classical solution ρ ,

$$arrho\in C([0,\,T];\,\mathcal{C}^{2+
u}(ar\Omega))\cap C^1([0,\,T];\,\mathcal{C}^
u(ar\Omega)).$$

Furthermore,

$$(\inf_{\Omega} \varrho_{0,\delta}) \exp\left(-\int_{0}^{\tau} \|\operatorname{div} \mathbf{u}_{n}(t)\|_{L^{\infty}} dt\right)$$

$$\leq \varrho(\tau, x) \leq$$

$$(\sup_{\Omega} \varrho_{0,\delta}) \exp\left(-\int_{0}^{\tau} \|\operatorname{div} \mathbf{u}_{n}(t)\|_{L^{\infty}} dt\right)$$

$$(11)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

for any $\tau \geq 0$ and any $x \in \Omega$.

• The mapping $\mathbf{u} \rightarrow \varrho[\mathbf{u}]$,

$$\varrho: C([0,T]; C_0^2(\bar{\Omega}; \mathbb{R}^N)) \to C([0,T]; C^{2+\nu}(\bar{\Omega}))$$

maps **bounded sets** in $C([0, T]; C_0^2(\overline{\Omega}; \mathbb{R}^N))$ into **bounded** sets in

$$C([0, T]; C^{2+
u}(\bar{\Omega})) \cap C^1([0, T]; C^{
u}(\bar{\Omega}))$$

and has the property

$$\begin{split} \|\varrho(\mathbf{u}^{1}) - \varrho(\mathbf{u}^{2})\|_{\mathcal{C}([0,T];W^{1,2}(\Omega))} &\leq T \, c(r,T) \|\mathbf{u}^{1} - \mathbf{u}^{2}\|_{\mathcal{C}([0,T];W^{1,2}_{0}(\Omega))}, \\ \text{for any } \mathbf{u}^{1}, \mathbf{u}^{2} \text{ belonging to the set} \\ M_{r} &= \{\mathbf{u} \in \mathcal{C}([0,T];W^{1,2}_{0}(\Omega)) \,|\, \|\mathbf{u}(t)\|_{L^{\infty}(\Omega)} + \|\nabla \mathbf{u}(t)\|_{L^{\infty}} \leq r, \,\forall t\}. \end{split}$$

Existence of $\eta[\mathbf{u}_n]$

Proposition. Let $\Omega \subset \mathbb{R}^3$ be a bounded domain of class $C^{2,\nu}, 0 < \nu \leq 1$. Assume that $\eta_{0,\delta} \in C^{0,\nu}(\bar{\Omega})$, and $\mathbf{u} \in C([0, T]; C_0^2(\bar{\Omega}; \mathbb{R}^3))$. Let the compatibility condition

$$(\nabla_{x}\eta_{0,\delta}(\mathbf{x})+\eta_{0,\delta}(x)\nabla\Phi(x))\cdot\mathbf{n}(\mathbf{x})=0, \ \mathbf{x}\in\partial\Omega$$

be satisfied. Then the Smoluchowski equation has a unique classical solution η such that $\eta \in V$. The solution operator $\mathbf{u} \to \eta[\mathbf{u}]$ assigning to any $\mathbf{u} \in C([0, T]; C_0^2(\bar{\Omega}); \mathbb{R}^3)$ the unique solution of Smoluchowski equation takes **bounded sets** of $C([0, T]; C_0^2(\bar{\Omega}; \mathbb{R}^3))$ into **bounded sets** in V.

Existence of u_n

It is now time to establish the local existence of a solution \mathbf{u}_n on a short interval [0, T(n)] for any fixed $n \in \{1, 2, ...\}$. Here, we express

$$\mathbf{u}_n(\tau) = \mathcal{M}^{-1}[\varrho(t)] \left(\mathbf{m}_{0,\delta}^* + \int_0^\tau \mathcal{N}[\mathbf{u}_n(t), \varrho(t), \eta(t)] dt \right).$$

Now,

$$\mathcal{M}[\varrho]: X_n \to X_n^*, \qquad \mathcal{N}[\varrho]: X_n \to X_n^*$$

are two operators defined by

$$<\mathcal{M}[\varrho]\mathbf{v},\mathbf{w}>=\int_{\Omega}arrho\pi\cdot\mathbf{w}\,dx,$$

$$<\mathcal{N}[\mathbf{u}_{n},\varrho,\eta],\pi>=\int_{\Omega}[\varrho\mathbf{u}_{n}\otimes\mathbf{u}_{n}-\mathbb{S}]:\nabla\pi+[p(\varrho)+\eta+\delta\varrho^{\alpha}]div\pi\,dx\\-\int_{\Omega}[\varepsilon\nabla\mathbf{u}_{n}\nabla\varrho+(\beta\varrho+\eta)\nabla_{x}\Phi]\cdot\pi dx,$$

respectively, with $\varrho = \varrho[\mathbf{u}_n]$, $\eta = \eta[\mathbf{u}_n]$, while X_n^* denotes the dual space of the finite dimensional space X_n and $\mathbf{m}^* \in X_n^*$ is given by

$$<\mathbf{m}^*_{\mathbf{0},\delta},\pi>=\int_{\Omega}\mathbf{m}_{\mathbf{0},\delta}\cdot\pi\,dx$$
 for $\pi\in X_n.$

Next, observe that the Propositions above now yield that

$$\mathcal{T}[\mathbf{u}] = \mathcal{M}^{-1}[\varrho(t)] \left(\mathbf{m}_{0,\delta}^* + \int_0^\tau \mathcal{N}[\mathbf{u}(t), \varrho(t), \vartheta(t)] \, dt \right)$$

maps compactly the ball

$$B = \{ \mathbf{v} \in C([0,T];X_n) \, | \, \| \mathbf{v}(t) - \mathbf{u}_{0,\delta,n} \|_{X_n} \leq 1 \} \subset C([0,T];X_n)$$

into itself at least for a small enough time T = T(n).

By applying the Schauder fixed point theorem and using the estimate

$$\|\mathcal{M}^{-1}[\varrho(\mathbf{u}^1)] - \mathcal{M}^{-1}[\varrho(\mathbf{u}^2)]\|_{\mathcal{L}(X_n^*,X_n)} \leq C(n,n) \|\varrho(\mathbf{u}^1) - \varrho(\mathbf{u}^2)\|_{L^1(\Omega)},$$

we obtain the existence of at least one solution \mathbf{u}_n on the interval [0, T(n)].

Theorem (Schauder fixed point theorem)

Let \mathcal{B} be a closed, convex, bounded subset of a Banach space X, and $\mathcal{T} : \mathcal{B} \to \mathcal{B}$ a compact operator. Then \mathcal{T} has a fixed point.

Indeed, it is easy to check that

$$\sup_{t\in[0,T]} \|\mathcal{T}[\mathbf{u}]-\mathbf{u}_{0,\delta,n}\|_{X_n} \leq c \sup_{t\in[0,T]} (\|\varrho(t)-\varrho_{0,\delta}\|_{L^1(\Omega)}+t).$$

Then, the continuity in time for $\varrho(t)$ implies the right-hand side is made small provided T = T(n) is small. We conclude \mathcal{T} maps \mathcal{B} into itself over a short time interval.

References

- **Carrillo, Karper, Trivisa** On the Dynamics of a Fluid-Particle Interaction Model: The Bubbling Regime. Nonlinear Analysis (2011)
- Ballew, Trivisa Weak-Strong Uniqueness of Solutions to the Navier-Stokes-Smolukowski System. Nonlinear Analysis (2013
- Ballew, Trivisa Suitable Weak Solutions & Low Stratification Singular Limit to a Fluid-Particle Interaction Model. QAM (2012)
- **Dafermos** The second law of thermodynamics and stability. ARMA (1979).
- **Doboszczak, Trivisa** On a fluid-particle interaction model in a moving domain: Global existence of weak solutions. FIC (2015).
- Feireisl Dynamics of viscous compressible fluids.
- (Oxford University Press (2003))
- P.-L. Lions Mathematical topics in fluid dynamics Vol.2, Compressible models. (Oxford Science Publication (1998))