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Problem D.



∂t%+ divx(%u) = 0

∂t(%u) + divx(%(u⊗ u) +∇x(p(%) + η)− µ∆u− λ∇x divx u

= −(η + β%)∇Φ,

∂tη + div(η(u−∇Φ))−∆η = 0.

B.C.
u|∂Ω = ∇η · ν + η∇Φ · ν = 0 on (0,T )× ∂Ω
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Strategy

Strategy

Variational Formulation

2 Derivatives ∼ in the sense of distributions

2 Equations ∼ family of integral identities

Approach

2 collect all available a priori estimates

2 construct a sequence of approximate problems whose
solutions satisfy these estimate

2 show that the sequence of approximate solutions converges
to solution of the original problem.
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Weak solutions

The idea of weak solutions is based on the concept of generalized
derivatives or distibutions. Classical functions are replaced by
integral averages

f : Q → R ≈
∫
Q
f ϕ, ϕ ∈ C∞c (Q).

C∞c (Q) denotes the set of infinitely differentiable functions with
compact support in Q.
Differential operators D can be conveniently expressed by means of
a formal by-parts integration:

Df ≈ −
∫
Q
f Dϕ, ϕ ∈ C∞c (Q).

⇓
Any (localy) integrable function possesses derivatives of arbitrary
order!



Models in Continuum Physics

Lecture 2: Notion of weak solutions

Renormalized solutions

Multiplying the continuity equation by (B ′(%)):

∂

∂t
(B(%))) + div (B(%)u) + b(%) divx u = 0 (1)

where
b(z) = B ′(z)z − B(z) (2)

Definition

We say that % and u is a renormalized solution of the continuity
equation on (0,T )× Ω if (1) holds in D′((0,T )× Ω) for any
functions

B ∈ C [0,∞) ∩ C 1(0,∞), b ∈ C [0,∞) bounded on [0,∞),

B(0) = b(0)− 0

satisfying (1)-(2) for all z > 0.
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Free energy solutions

{%,u, η} is an admissible free energy solution of Problem D,
supplemented with the initial data {%0,u0, η0} provided that

% ≥ 0, u is a renormalized solution of the continuity
equation,that is,∫ T

0

∫
Ω

(%B(%)∂tϕ+ %B(%)u · ∇xϕ− b(%) div uϕ) dxdt

= −
∫

Ω
%0B(%0)ϕ(0, ·)dx

holds for any test function ϕ ∈ D([0,T )× Ω) and suitable b
and B.

The balance of momentum holds in distributional sense. The
velocity field u belongs to the space L2(0,T ;W 1,2(Ω;R3)),
therefore it is legitimate to require u to satisfy the boundary
conditions in the sense of traces.
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η ≥ 0 is a weak solution of the Smoluchowski equation. That
is, ∫ ∞

0

∫
Ω
η∂tϕ+ ηu · ∇ϕ− η∇Φ · ∇ϕ−∇η∇ϕdxdt

= −
∫

Ω
η0ϕ(0, ·)dx

is satisfied for test functions ϕ ∈ D([0,T )× Ω̄) and any
T > 0. In particular,

η ∈ L2([0,T ]; L3/2(Ω)) ∩ L1(0,T ;W 1, 3
2 (Ω))
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Given the total free-energy of the system by

E (%,u, η)(t) :=

∫
Ω

(
1

2
%|u|2 +

a

γ − 1
%γ + η log η + (β%+ η)Φ

)
,

then E (%,u, η)(t) is finite and bounded by the initial energy
of the system

E (%,u, η)(t) ≤ E (%0,u0, η0) a.e. t > 0

Moreover, the following free energy-dissipation inequality holds∫ ∞
0

∫
Ω

(
µ|∇u|2 + λ| div u|2 + |2∇√η +

√
η∇Φ|2

)
dt

≤ E (%0,u0, η0)
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Theorem

Let Ω ⊂ R3 bounded domain and (Ω,Φ) satisfy the confinement
hypotheses (HC). Then, Problem D admits a weak solution
{%,u, η} on (0,∞)× Ω. In addition,

i) the total fluid mass and particle mass given by

M%(t) =

∫
Ω
%(t, ·) dx and Mη(t) =

∫
Ω
η(t, ·) dx ,

respectively, are constants of motion.

ii) the density satisfies the higher integrability result

% ∈ Lγ+Θ((0,T )× Ω), for any T > 0,

where Θ = min{2
3γ − 1, 1

4}.
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An approximating scheme with the aid of
Faedo-Galerkin approximations

Here the aproximate solutions are constructed using a three-level
approximation scheme. Let Xn for n ∈ N denote a family of finite
dimensional spaces consisting of smooth vector-valued functions on
Ω vanishing of ∂Ω.
Two different types of regularizations are introduced:

1 The ε-regularizations are included to guarantee that certain a
priori estimates hold true while the energy inequality remains
valid at each level of the approximation.

2 The δ-regularization introduces an artificial pressure which is
essential in obtaining the convergence result.

Thus, we consider the approximate system:
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∂t%n + div(%nun) = ε∆%n

∂tηn + div(ηn(un −∇Φ)) = ∆ηn∫
Ω
∂t(%nun) ·w dx =

∫
Ω
%nun⊗un : ∇w + (a%γn +ηn +δ%αn ) div w dx

−
∫

Ω
S(∇u) : ∇w + ε∇%n · ∇un ·wdx −

∫
Ω

(ηn%n + ηn)∇Φ ·w dx

for any w ∈ Xn, where Xn is a finite dimensional space and α is
suitably large exponent.

Boundary conditions

∇x% · n = 0, un = (∇xηn + ηn∇xΦ) · n = 0 on (0,T )× ∂Ω
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Faedo-Galerkin method

The (approximate) initial boundary value problem will be solved
via a modified Faedo-Galerkin method. We start by introducing
a finite-dimensional space

Xn = span{πj}nj=1, n ∈ {1, 2, . . . }

with πj ∈ D(Ω)N being a set of linearly independent functions
which are dense in C 1

0 (Ω̄,RN).
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The approximate velocities un ∈ C ([0,T ];Xn) satisfy a set of
integral equations of the form∫

Ω
%un(τ) · π dx −

∫
Ω

m0,δ · π =

∫ τ

0

∫
Ω

(%un ⊗ un − Sn) : ∇η + (p(%) + η + δ%β) div π dxdt∫ τ

0

∫
Ω

(ε∇un∇%) · π dxdt,

for any test function π ∈ Xn, all τ ∈ [0,T ].
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The goal is to seek a fixed point

un ∈ C ([0,T ];Xn).

In order to carry this out, we need information on the mappings
assigning each un to unique solutions %, η via the approximate
continuity and Smoluchowski equations.
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Existence for %[un].

Proposition. Let Ω ⊂ RN be a bounded domain of class C 2+ν ,
0 < ν ≤ 1. Suppose that %0,δ ∈ C 2+ν(Ω̄) is positive, and satisfies
the condition

∇x%0,δ · n = 0 on ∂Ω.

Let u→ %[u] assign to any u ∈ C ([0,T ];C 2
0 (Ω̄;R3)) a unique

solution % of the modified fluid density equation. Then this map
takes bounded sets in the space C ([0,T ];C 2

0 (Ω̄;R3)), into
bounded sets of the space

V :=

{
∂t% ∈ C ([0,T ];C ν(Ω̄)

% ∈ C ([0,T ];C 2+ν(Ω̄)

and the map u ∈ C ([0,T ];C 2
0 (Ω̄;R3))→ %[u] ∈ C 1([0,T ]× Ω̄) is

continuous.
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Furthermore,

(inf
Ω
%0,δ) exp

(
−
∫ τ

0
‖ div un(t)‖L∞dt

)
≤ %(τ, x) ≤ (3)

(sup
Ω
%0,δ) exp

(
−
∫ τ

0
‖ div un(t)‖L∞dt

)
for any τ ≥ 0 and any x ∈ Ω.
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The mapping u→ %[u],

% : C ([0,T ];C 2
0 (Ω̄;RN))→ C ([0,T ];C 2+ν(Ω̄))

has the property

‖%(u1)−%(u2)‖C([0,T ];W 1,2(Ω)) ≤ T c(r ,T )‖u1−u2‖
C([0,T ];W 1,2

0 (Ω))
,

for any u1,u2 belonging to the set

Mr = {u ∈ C ([0,T ];W 1,2
0 (Ω)) | ‖u(t)‖L∞(Ω)+‖∇u(t)‖L∞ ≤ r , ∀t}.
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Existence of η[un]

Proposition. Let Ω ⊂ R3 be a bounded domain of class
C 2,ν , 0 < ν ≤ 1. Assume that η0,δ ∈ C 0,ν(Ω̄), and
u ∈ C ([0,T ];C 2

0 (Ω̄;R3)). Let the compatibility condition

(∇xη0,δ(x) + η0,δ(x)∇Φ(x)) · n(x) = 0, x ∈ ∂Ω

be satisfied. Then the Smoluchowski equation has a unique
classical solution η such that η ∈ V . The solution operator
u→ η[u] assigning to any u ∈ C ([0,T ];C 2

0 (Ω̄);R3) the unique
solution of Smoluchowski equation takes bounded sets of
C ([0,T ];C 2

0 (Ω̄;R3)) into bounded sets in V .
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Existence of un

It is now time to establish the local existence of a solution un on a
short interval [0,T (n)] for any fixed n ∈ {1, 2, . . . }. Here, we
express

un(τ) =M−1[%(t)]

(
m∗0,δ +

∫ τ

0
N [un(t), %(t), η(t)] dt

)
.

Now,
M[%] : Xn → X ∗n , N [%] : Xn → X ∗n

are two operators defined by

<M[%]v,w >=

∫
Ω
%π ·w dx ,

< N [un, %, η], π > =

∫
Ω

[%un ⊗ un − S] : ∇π + [p(%) + η + δ%α]divπ dx

−
∫

Ω
[ε∇un∇%+ (β%+ η)∇xΦ] · πdx ,
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respectively, with % = %[un], η = η[un], while X ∗n denotes the dual
space of the finite dimensional space Xn and m∗ ∈ X ∗n is given by

< m∗0,δ, π >=

∫
Ω

m0,δ · π dx for π ∈ Xn.

Next, observe that the Propositions above now yield that

T [u] =M−1[%(t)]

(
m∗0,δ +

∫ τ

0
N [u(t), %(t), ϑ(t)] dt

)
maps compactly the ball

B = {v ∈ C ([0,T ];Xn) |‖v(t)− u0,δ,n‖Xn ≤ 1} ⊂ C ([0,T ];Xn)

into itself at least for a small enough time T = T (n).
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By applying the Schauder fixed point theorem and using the
estimate

‖M−1[%(u1)]−M−1[%(u2)]‖L(X∗n ,Xn) ≤ C (n, n)‖%(u1)−%(u2)‖L1(Ω),

we obtain the existence of at least one solution un on the interval
[0,T (n)].

Theorem (Schauder fixed point theorem)

Let B be a closed, convex, bounded subset of a Banach space X ,
and T : B → B a compact operator. Then T has a fixed point.
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Indeed, it is easy to check that

sup
t∈[0,T ]

‖T [u]− u0,δ,n‖Xn ≤ c sup
t∈[0,T ]

(‖%(t)− %0,δ‖L1(Ω) + t).

Then, the continuity in time for %(t) implies the right-hand side
is made small provided T = T (n) is small. We conclude T maps B
into itself over a short time interval.
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Uniform bounds

In order to provide bounds on the various quantities, an
approximate energy balance is derived by using u as a test
function in the approximate momentum equation.

⇓∫
Ω

(
1

2
%n|un|2 +

a

γ − 1
%γn +

δ

α− 1
%αn + ηn ln ηn + ηnΦ

)
dx

+

∫ T

0

∫
Ω

(
S(∇un) : ∇un + |2∇√ηn +

√
ηn∇Φ|2

)
dx dt

+ε

∫ T

0

∫
Ω
|∇%n|2(aγ%γ−2

n + δa%α−2
n )dx dt

=

∫
Ω

(
1

2
%0,δ|u0,δ|2 +

a

γ − 1
%γ0,δ +

δ

α− 1
%α0,δ + η0,δ ln η0,δ + η0,δΦ

)
dx

−β
∫ T

0

∫
Ω
%nun · ∇Φdx dt
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The terms on the left-hand side of the approximate energy balance
are all non- negative with the potential exception of ηn log ηn. We
need bounds on the negative contribution ηn log− ηn.

Lemma

Suppose Ω is a bounded domain, and η ∈ L1
+(Ω). Assume∫

Ω
η log η(x)dx ≤ C1 for some constant C1.

Then η log η ∈ L1(Ω) and∫
Ω
|η(x) log η(x)|dx ≤ c(C1, |Ω|).
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The following bounds are evident from a quick inspection of the
approximate energy balance{√

%u
}
n,ε,δ
∈b L∞(0,T ; L2(Ω))

{%}n,ε,δ ∈b L∞(0,T ; Lγ(Ω))

{η ln η}n,ε,δ ∈b L∞(0,T ; L1(Ω))

{u}n,ε,δ ∈b L2(0,T ;W 1,2
0 (Ω)){

∇√η
}
n,ε,δ
∈b L2(0,T ; L2(Ω))

In addition,
{η}n,ε,δ ∈b L2(0,T ;W 1, 3

2 (Ω)).
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Convergence of the Approximate Solutions

Now, the goal is to show that the approximate solutions
{%,u, η}n,ε,δ converge to a solution {%,u, η} in the sense that we
discussed.
The limits are taken as follows.

Take n→∞ to obtain %n → %ε,u→ uε and ηn → ηε in the
Faedo-Galerkin approximations.

Take ε→ 0 to obtain %ε → %δ, uε → uδ, and ηε → ηδ.

Take δ → 0 for %δ → %, uδ → u, and ηδ → η.

The next step is to show that the above limits can be taken.
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Some Remarks on the Existence Theory of
Compressible Flow

Having set the approximation scheme, the existence of
solutions are proved locally in time using a fixed-point
argument and then extended to the full time interval [0,T ]
using uniform-in-time estimates.

Thereafter, uniform estimates provided by an energy
inequality at the Galerkin level allow us to pass to the limit in
the first level of the approximation. At each level, weak lower
semicontinuity of the norms allow us to keep the energy
inequality valid.
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In passing to the limit at the second and third levels of the
approximation, the linear terms in the NSS system cause no
difficulty.

The nonlinear convective terms

(%u, ηu, %u⊗ u)

are handled in a natural way as the NSS system provides
estimates on the time derivatives

(∂t%, ∂t(ηu), ∂t(%u)).

Along with a priori estimates on the velocity

u ∈ L2(0,T ;H1
0 (Ω;R3),

the passage to the limit in the convective terms follows.
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The difficulty is passing to the limit in the pressure term

p(%) = %γ .

First, the a priori estimates only provide estimates on the
pressure in L∞(0,T ; L1(Ω)), which doesnt allow passage to a
weak-limit. It is necessary to prove estimates of the form:∫ T

0

∫
Ω
%γ+ωdxdt ≤ c ,

where ω > 0 is small. where ω > 0 is small. This type of
estimate, first shown by P.L. Lions, allows us to pass to the
limit weakly in the pressure to deduce

%γε,δ → %γ ,

in a suitable Lebesgue space, where the overbar indicates a
weak limit. The trick is now to show that in fact %γ = %γ

almost everywhere, which requires strong convergence of the
fluid density.
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Two tools are employed:

Renormalization of the continuity equation: Provided the
denisty % is square integrable, we are allowed to conclude that
for a suitable function B(%) that

∂tB(%) + divx(B(%)u) + (B ′(%)%− B(%)) divx u = 0

holds in the sense of distributions. This is where Lions
requires that γ ≥ 9/5, ensuring square integrability of the
density in light of the pressure estimates.

The weak continuity of the so-called effective viscous pressure,
defined as

Peff = %γ − (λ+ 2µ) divx u.
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Choosing the convex function B(%) = % log % in the renormalized
equation for both %ε,δ and the limit density %, we can show that

0 ≤
∫

Ω
(% log %)− % log %)(t)dx ≤

∫ t

0

∫
Ω

(% divx u− % divx u)dxdt.

(4)
Remarks:

The left inequality follows from the convexity of the map
z → z log z . Provided we can show the upper bound of the
inequality is non-positive, it follows that

% log % = % log % a.a.

To close the argument, the weak continuity of the effective
viscous pressure is used to ensure the non-positivity of the
upper bound in the above relation by transferring information
from the monotonicity of the pressure %γ to the terms % divx u.
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In particular the result on the effective viscous pressure reads:

lim
ε,δ

∫ T

0

∫
Ω

(%γε,δ − (λ+ 2µ) divx uε,δ)%ε,δdxdt

=

∫ T

0

∫
Ω

(%γ − (λ+ 2µ) divx u)%dxdt.
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This highly nontrivial equality, along with the monotonicity of the
pressure implying∫ T

0

∫
Ω
%γ%dxdt ≤ lim inf

ε,δ

∫ T

0

∫
Ω
%γ+1
ε,δ dxdt,

allow us to conclude the nonpositivity of the upper bound in (4).
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Finally, Feireisl (1999) showed that (%,u) is a renormalized solution
even if the density is not square integrable, by obtaining estimates
on the possible density oscillations that can occur in the limit
passage. In particular, introducing the oscillations defect measure

oscp[%δ → %](O) := sup
k≥1

(
lim sup
n→∞

∫
O
|Tk(%δ)− Tk(%)|pdvdt

)
.
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Some fundamental techniques
How do we deal with non-linearities?

The Div-Curl Lemma: One of the major discoveries of the
compensated compactness theory. [Tartar (1975), Murat]

Weak continuity of the effective viscous pressure: The
quantity

Peff = p − (2µ+ λ) div u

is known as effective viscous pressure.

⇓
Strong convergence of the fluid density

Aubin-Lions lemma
⇓

Strong convergence of the particle density
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Multipliers Technique: relies on employing special test
functions (solutions of an elliptic problem) in the weak
formulation of the momentum equation.

⇓
Increase the integrability of the pressure.
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Lemma (Div-Curl Lemma)

Let Ω ⊂ RN be a domain. Let Un and Vn two sequences of vector
functions such that

Un → U weakly in Lp(Ω;RN) (5)

Vn → V weakly in Lq(Ω;RN). (6)

with
1

p
+

1

q
≤ 1, 1 < p, q <∞.

Furthermore, let{
divx Un = 0 in D′(Ω) for n = 1, 2, . . .

Vn = ∇Gn, withGn bounded inW 1,q(Ω).

Then
Un · Vn → U · V inD′(Ω).
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Proof of the Simplified Div-Curl Lemma

Up to a subsequence

Gn → G weakly in W 1,q, where ∇G = V.

Taking arbitrary test function ϕ ∈ D(Ω), we have∫
Ω
ϕUn · Vn dx =

∫
Ω
ϕUn · ∇Gn dx = −

∫
Ω
GnUn · ∇ϕ dx

where the most right integral tends to

−
∫

Ω
GU · ∇ϕdx =

∫
Ω
ϕU · V dx .
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Aubin-Lions lemma

Lemma

Let X0,X and X1 be three Banach spaces with X0 ⊂ X ⊂ X1.
Suppose that X0 is compactly embedded in X and that X is
continuously embedded in X1. For 1 ≤ p, q ≤ +∞, let

W = {u ∈ Lp([0,T ];X0), u̇ ∈ Lq([0,T ];X1)}.

(i) If p < +∞, then the embedding of W into Lp([0,T ];X1) is
compact.
(ii) If p = +∞ and q > 1, then the embedding of W into
C ([0,T ];X ) is compact.
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A consequence of Aubin-Lions lemma

Lemma

Let X ⊂ B ⊂ Y be Banach spaces with X ⊂ B compactly. Then,
for 1 ≤ p <∞, {v : v ∈ Lp(0,T : X ), vt ∈ L1(0,T ;Y )} is
compactly embedded in Lp(0,T ;B).

Proof.

For the proof we refer to Simon (1987).
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Thus, applying Aubin-Lions Lemma with p = 2, X = W 1, 3
2 (Ω),

B = L3/2(Ω), and Y = L1(Ω) we arrive at

{η}n,ε → ηδ in L2(0,T ; L3/2(Ω)). (7)
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Vanishing viscosity limit

The next step is to let the parameter ε vanish and demonstrate
that the solution (%ε,uε, ηε), constructed in the previous step,
converges to (%δ,uδ, ηδ).
Challenge: At this stage, we lose control of %ε in a positive
Sobolev space. Demostrating strong compactness for %ε is the key
in order to pass to the limit in the nonlinear terms.
More challenges:

The energy inequality provides bounds for the pressure
p(%ε) + δ%ε in L1((0,T )× Ω). This is estimate is not strong
enough to prevent concentration phenomena.
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The following lemma provides necessary pressure estimates.

Lemma

There exists a nonnegative constant c, independent of ε, such that∫ T

0

∫
Ω
%α+1
ε dxdt ≤ c .

Proof.

We postpone the proof for later.
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Strong convergence of the density

There are two key results needed to obtain the strong convergence
of the density:

• establishing the weak continuity of the effective viscous
pressure, and
• renormalizing the continuity equation both at the level of the

approximate solution and the limiting solution. The former is
originally due to Lions [54] and asserts that the effective
viscous pressure, defined as

Peff = p − (2µ+ λ) divx u,

satisfies a weak continuity property in the sense that its
product with another weakly converging sequence converges
to the product of the weak limits.

The latter result allows us to deduce that if % satisfies the
continuity equation, then so does a suitable nonlinear composition
B(%), up to minor modification of the equation.
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Riesz operator

To this end, we introduce the Riesz integral operator, R :

Ri [v ](x) ≡ (−∆)−1/2∂xi = c lim
ε→0

∫
ε≤|y|≤ 1

ε

v(x− y)
yi
|yN+1|

dy.

or, equivanelntly, in terms of its Fourier symbol,

Ri (ξ) =
iξ

|ξ|
, i = 1, . . . ,N.

Lemma (Calderon and Zygmund Theorem)

The Riesz operator Ri , i = 1, . . . ,N defined above is a bounded
linear operator on Lp(RN) for any 1 < p <∞.
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Commutators involving the Riesz Operator -
Weak convergence

Theorem

Let

Un → U weakly in Lp(Ω;RN) (8)

Vn → V weakly in Lq(Ω;RN). (9)

with 1
p + 1

q = 1
s ≤ 1. Then,

Vε · R[Uε]−R[Vε] ·Uε → V · R[U]−R[V] ·U

weakly in Ls(RN).
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Proof of Commutator’s Theorem

Writing

Vε·R[Uε]−R[Uε]·Vε = (Vε −R[Vε])·R[Uε]−(Uε −R[Uε])·R[Vε]

we can easily check that

divx(Vε −R[Vε]) = divx(Uε −R[Uε]) = 0,

while R[Uε],R[Vε], are gradient, in particular

curlxR[Uε] = curlxR[Vε] = 0.

The desired conclusion follows from the Div-Curl Lemma.
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Thus, the only terms to consider in the momentum and energy
balances are the pressure-related terms. First, using the Bogovskii
operator B, analogous to the inverse divergence, the test function
w := ψϕ where ψ ∈ C∞c (0,T ), ϕ := B[%ε − %] where
% := 1

|Ω|
∫

Ω %ε dx in the approximate momentum equation and
performing some analysis:∫ T

0
ψ

∫
Ω

(a%γε +ηε+δ%αε )%ε dx dt =

∫ T

0
ψ%

∫
Ω
a%γε +ηε+δ%αε dx dt

−
∫ T

0
ψ

∫
Ω
%εuε · ∂tϕdx dt −

∫ T

0
ψ

∫
Ω
%εuε ⊗ uε : ∇ϕdx dt

+

∫ T

0
ψ

∫
Ω
S(∇uε) : ∇ϕdxdt +

∫ T

0
ψ

∫
Ω

(β%ε + ηε)∇Φ · ϕdx dt

−
∫ T

0
ψ′
∫

Ω
%εuε · ϕdx dt + ε

∫ T

0
ψ

∫
Ω
∇%ε∇uε · ϕdx dt.
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Similarly, the test function

ψζϕ2 with ϕ2 := ∇∆−1(1Ω%)

is used in the weak limit of the approximate (level-ε) momentum
equation, to obtain:
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∫ T

0

∫
Ω
ψζ((a%γ + η + δ%α)δ%δ − S(∇uδ) : RT (1Ω%δ))dxdt

=

∫ T

0

∫
Ω
ψζ(%δu + δ · RT (1Ω%δuδ)− (%δuδ ⊗ uδ) : RT (1Ω%δ))dxdt

+

∫ T

0

∫
Ω
ψζ(β%δ + ηδ)∇Φ · ∇∆−1(1Ωuδ)dxdt

−
∫ T

0

∫
Ω
ψ(a%γ + η + δ%α)δ∇ζ · ∇∆−1(1Ω%δ)dxdt

+

∫ T

0

∫
Ω
ψS(∇uδ) : ∇ζ ⊗∇∆−1(1Ω%δ)dxdt

−
∫ T

0

∫
Ω
ψ(%δuδ ⊗ uδ : ∇ζ ⊗∇∆−1(1Ω%δ)dxdt

−
∫ T

0

∫
Ω
ζ%δuδ∂tψ · ∇∆−1(1Ω%δ)dxdt.
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From the convergence results stated earlier and the fact that from
the theory of elliptic problems the operator ∇∆−1 gains a spatial
derivative, i.e., due to the embedding W 1,α(Ω) ↪→ C (Ω),

∇∆−1(1Ω%ε)→ ∇∆−1(1Ω%δ)

in C ([0,T ]× Ω;R3). Thus, taking the limit as ε→ 0 in the
previous two equations, it follows that

lim
ε→0

∫ T

0

∫
Ω
ψζ((a%γε + ηε + δ%αε )%ε − S(∇uε) : RT (1Ω%ε))dxdt

=

∫ T

0

∫
Ω
ψζ(a%γ + η + δ%α)δ%δ − S(∇uδ) : RT (1Ω%δ))dxdt

+ lim
ε→0

∫ T

0

∫
Ω
ψζ(%εuε · RT (1Ω%εuε)− (%εuε ⊗ uε) : RT (1Ω%ε))dxdt

−
∫ T

0

∫
Ω
ψζ(%δuδ · RT (1Ω%δuδ)− (%δuδ ⊗ uδ) : RT (1Ω%δ))dxdt.
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The goal now is to show that the difference of the last two
integrals above vanishes when the limit for ε is taken. This follows
from the Commutators’s lemma:

Lemma

Let Vε → V weakly in Lp(R3;R3) and rε → r weakly in Lq(R3).
Define s such that

1

p
+

1

q
=

1

s
< 1.

Then
rεRT (Vε)−RT (rε)Vε → rRT (V)−RT V

weakly in Ls(R3;R3).
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Using the Commutator Lemma and some analysis, the weak
compactness identity for the pressure is derived:

[(a%γ + η + δ%α)%]δ −
(

4

3
µ+ λ

)
(% div u)δ

= (a%γ + η + δ%α)δ%δ −
(

4

3
µ+ λ

)
%δ div uδ.

By multiplying the approximate continuity equation by
G ′(%ε) = %ε ln %ε noting that G is a smooth convex function,
integrating by parts, and taking the weak limit we obtain after
some analysis, that

(% ln %)δ = %δ ln %δ

which since z 7→ z ln z is strictly convex, implies that %ε → %δ
almost everywhere on (0,T )× Ω.
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Pressure Estimates
Challenge:

The central problem of the mathematical theory of the N-S system
is to control the pressure. Under the constitutive relations
presented here, the pressure p is a priori bounded in L1(Ω)
uniformly with respect to time.

‖p‖L1((0,T ;L1(Ω)) ≤ c0(E0, S0,Bf ,T ).

The non-reflexive Banach space L1 is not convenient as bounded
sequences are not necessarily weakly pre-compact; more precisely,
concentration phenomena may occur to prevent bounded sequences
in this space from converging weakly to an integrable function.
Our goal here to find a priori estimates for p in the weakly closed
reflexive space Lq((0,T )× Ω)) for a certain q > 1.

Idea: Compute p by means of the momentum equation and use
the available estimates in order to control the remaining terms.
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Local pressure estimates
Idea:

Compute the pressure p in the momentum equation and use the
energy estimates already available. Applying the divergence
operator to the momentum equation we obtain:

∆%γ = divx divx S− divx divx(%u⊗ u)−∆η − ∂t divx(%u)

+ divx(%β + η)∇Φv. (10)

Since we already know about the space setting for the quantities
{%, %u, %u⊗ u, S}, relation (10) can be viewed as an elliptic
equation to be resolved with respect to the pressure p to obtain an
estimate

p ∈ Lr ((0,T )× Ω) for r > 0.
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The most problematic term is certainly

∂t∆
−1 divx(%u)

for which there are no estimates available.
Here, the idea is to use the fact that % is a renormalized solution
of the continuity equation. In that case, we can use (10) to obtain∫ T

0

∫
Ω
ψpB(%) dxdt

≈ bounded terms +

∫ T

0

∫
Ω
∂tψ(∆−1 divx)[%u]B(%) dxdt

+

∫ T

0

∫
Ω
∂tψ(∆−1 divx)[%u]∂tB(%)dxdt,

for any ψ ∈ D(0,T ), where
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∂tB(%) = −b(%) divx u− divx(B(%)u).

In other words, if we succeed to make this formal procedure
rigorous, we get pressure estimates of the form

pB(%) bounded in L1
loc((0,T )× Ω)

for a suitable function B.
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Riesz operator

To this end, we introduce the Riesz integral operator, R :

Ri [v ](x) ≡ (−∆)−1/2∂xi = c lim
ε→0

∫
ε≤|y|≤ 1

ε

v(x− y)
yi
|yN+1

dy.

or, equivanelntly, in terms of its Fourier symbol,

Ri (ξ) =
iξ

|ξ|
, i = 1, . . . ,N.

Lemma (Calderon and Zygmund Theorem)

The Riesz operator Ri , i = 1, . . . ,N defined above is a bounded
linear operator on Lp(RN) for any 1 < p <∞.
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Lemma

Let {%δ,uδ, ηδ}δ>0 be a sequence of artificial pressure solutions.
Then, there exists a constant c(T ), independent of δ, such that∫ T

0

∫
Ω
%γ+θ
δ dxdt ≤ c(T ),

where Θ = min{2
3γ − 1, 1

4}.
If Ω is unbounded, then ∇xΦ is no longer integrable and we cannot
simply apply existing results. To prove the bound in this case, let
∆−1 be the inverse Laplacian realized using Fourier multipliers.
For each fixed δ > 0, let the test-function vδ be given as

vδ = ∇∆−1%θδ .
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Thus,
vδ ∈b L∞(0,T ;W 1,s(Ω)) ∩ L∞(0,T ; L∞(Ω)).

Next, since (%δ,uδ) is a renormalized solution to the continuity
equations, with B(%δ) = %θδ states

∂t%
θ
δ = − div(%θδu)− (θ − 1)%θδ div u,

in the sense of distributions on (0,T )× Ω. For notational
convenience, we observe that

‖∂tvδ‖Lp(0,T ;Lq(Ω)) = ‖∇∆−1∂t%
θ
δ‖Lp(0,T ;Lq(Ω))

≤ ‖%θδuδ‖Lp(0,T ;Lq(Ω)) + ‖%θ div u‖Lp(0,T ;Lr (Ω)),

for appropriate 1 ≤ p, q ≤ ∞ and r∗ = q.
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Next, we apply vδ as test function for the momentum equation to
obtain ∫ T

0

∫
Ω
a%γ+θ
δ dxdt

= −
∫ T

0

∫
Ω

(%δuδ)∂tvδ + %δuδ ⊗ uδ : ∇vδ dxdt

+

∫ T

0

∫
Ω
µ∇uδ∇vδ + λ div uδ div vδ dxdt

−
∫ T

0

∫
Ω
ηδ%

θ
δ − (%δβ + ηδ)∇Φδvδ dxdt −

∫
Ω

m0vδ(0, ·) dx

:= I1 + I2 + I3.
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Artificial pressure limit

At the previous step, the key in renormalizing the continuity
equation was using the integrability gain from the artificial pressure
to ensure that %ε was bounded in L2(0,T ; L2(Ω)). Having lost this
integrability through the passage δ → 0 and since we require that
γ > 3

2 , we proceed by defining the oscillation defect measure. our
assumption that the pressure is given by p(%) = %γ for γ > 3

2 The
oscillations defect measure is defined as

oscp[%δ → %](O) := sup
k≥1

(
lim sup
n→∞

∫
O
|Tk(%δ)− Tk(%)|pdvdt

)
.
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The oscillation defect measure

oscp[%δ → %](O) := sup
k≥1

(
lim sup
n→∞

∫
O
|Tk(%δ)− Tk(%)|pdvdt

)
.

The functions Tk are cuttoff functions defined by

Tk(z) := kT
( z
k

)
where T is such that for nonnegative arguments, T (z) = z for
z ∈ [0, 1], T (z) = 2 for z ≥ 3, and a smooth extension is used over
the interval [0, 2].
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The validity of the weak continuity of the effective viscous pressure
implies that the oscillations defect measure is bounded:

oscγ+1[%δ → %](O) ≤ c(|O|).

⇓

%δ → % strongly in L1((0,T )× Ω).
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