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Problem D.



∂t%+ divx(%u) = 0

∂t(%u) + divx(%(u⊗ u) +∇x(p(%) + η)− µ∆u− λ∇x divx u

= −(η + β%)∇Φ,

∂tη + div(η(u−∇Φ))−∆η = 0.

B.C.
u|∂Ω = ∇η · ν + η∇Φ · ν = 0 on (0,T )× ∂Ω



Models in Continuum Physics

An approximating scheme with the aid of
Faedo-Galerkin approximations

Here the aproximate solutions are constructed using a three-level
approximation scheme. Let Xn for n ∈ N denote a family of finite
dimensional spaces consisting of smooth vector-valued functions on
Ω vanishing of ∂Ω.
Two different types of regularizations are introduced:

1 The ε-regularizations are included to guarantee that certain a
priori estimates hold true while the energy inequality remains
valid at each level of the approximation.

2 The δ-regularization introduces an artificial pressure which is
essential in obtaining the convergence result.

Thus, we consider the approximate system:
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∂t%n + div(%nun) = ε∆%n

∂tηn + div(ηn(un −∇Φ)) = ∆ηn∫
Ω
∂t(%nun) ·w dx =

∫
Ω
%nun⊗un : ∇w + (a%γn +ηn +δ%αn ) div w dx

−
∫

Ω
S(∇u) : ∇w + ε∇%n · ∇un ·wdx −

∫
Ω

(ηn%n + ηn)∇Φ ·w dx

for any w ∈ Xn, where Xn is a finite dimensional space and α is
suitably large exponent.

Boundary conditions

∇x% · n = 0, un = (∇xηn + ηn∇xΦ) · n = 0 on (0,T )× ∂Ω
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Faedo-Galerkin method

The (approximate) initial boundary value problem will be solved
via a modified Faedo-Galerkin method. We start by introducing
a finite-dimensional space

Xn = span{πj}nj=1, n ∈ {1, 2, . . . }

with πj ∈ D(Ω)N being a set of linearly independent functions
which are dense in C 1

0 (Ω̄,RN).
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The approximate velocities un ∈ C ([0,T ];Xn) satisfy a set of
integral equations of the form∫

Ω
%un(τ) · π dx −

∫
Ω

m0,δ · π =

∫ τ

0

∫
Ω

(%un ⊗ un − Sn) : ∇η + (p(%) + η + δ%β) div π dxdt∫ τ

0

∫
Ω

(ε∇un∇%) · π dxdt,

for any test function π ∈ Xn, all τ ∈ [0,T ].
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The limits are taken as follows.

Take n→∞ to obtain %n → %ε,u→ uε and ηn → ηε in the
Faedo-Galerkin approximations.

Take ε→ 0 to obtain %ε → %δ, uε → uδ, and ηε → ηδ.

Take δ → 0 for %δ → %, uδ → u, and ηδ → η.

The next step is to show that the above limits can be taken.
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Some Remarks on the Existence Theory of
Compressible Flow

Having set the approximation scheme, the existence of
solutions are proved locally in time using a fixed-point
argument and then extended to the full time interval [0,T ]
using uniform-in-time estimates.

Thereafter, uniform estimates provided by an energy
inequality at the Galerkin level allow us to pass to the limit in
the first level of the approximation. At each level, weak lower
semicontinuity of the norms allow us to keep the energy
inequality valid.
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In passing to the limit at the second and third levels of the
approximation, the linear terms in the NSS system cause no
difficulty.

The nonlinear convective terms

(%u, ηu, %u⊗ u)

are handled in a natural way as the NSS system provides
estimates on the time derivatives

(∂t%, ∂t(ηu), ∂t(%u)).

Along with a priori estimates on the velocity

u ∈ L2(0,T ;H1
0 (Ω;R3),

the passage to the limit in the convective terms follows.
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The difficulty is passing to the limit in the pressure term

p(%) = %γ .

First, the a priori estimates only provide estimates on the
pressure in L∞(0,T ; L1(Ω)), which doesnt allow passage to a
weak-limit. It is necessary to prove estimates of the form:∫ T

0

∫
Ω
%γ+ωdxdt ≤ c ,

where ω > 0 is small. where ω > 0 is small. This type of
estimate, first shown by P.L. Lions, allows us to pass to the
limit weakly in the pressure to deduce

%γε,δ → %γ ,

in a suitable Lebesgue space, where the overbar indicates a
weak limit. The trick is now to show that in fact %γ = %γ

almost everywhere, which requires strong convergence of the
fluid density.
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Two tools are employed:

Renormalization of the continuity equation: Provided the
denisty % is square integrable, we are allowed to conclude that
for a suitable function B(%) that

∂tB(%) + divx(B(%)u) + (B ′(%)%− B(%)) divx u = 0

holds in the sense of distributions. This is where Lions
requires that γ ≥ 9/5, ensuring square integrability of the
density in light of the pressure estimates.

The weak continuity of the so-called effective viscous pressure,
defined as

Peff = %γ − (λ+ 2µ) divx u.
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Choosing the convex function B(%) = % log % in the renormalized
equation for both %ε,δ and the limit density %, we can show that

0 ≤
∫

Ω
(% log %)− % log %)(t)dx ≤

∫ t

0

∫
Ω

(% divx u− % divx u)dxdt.

(1)
Remarks:

The left inequality follows from the convexity of the map
z → z log z . Provided we can show the upper bound of the
inequality is non-positive, it follows that

% log % = % log % a.a.

To close the argument, the weak continuity of the effective
viscous pressure is used to ensure the non-positivity of the
upper bound in the above relation by transferring information
from the monotonicity of the pressure %γ to the terms % divx u.
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In particular the result on the effective viscous pressure reads:

lim
ε,δ

∫ T

0

∫
Ω

(%γε,δ − (λ+ 2µ) divx uε,δ)%ε,δdxdt

=

∫ T

0

∫
Ω

(%γ − (λ+ 2µ) divx u)%dxdt.
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This highly nontrivial equality, along with the monotonicity of the
pressure implying∫ T

0

∫
Ω
%γ%dxdt ≤ lim inf

ε,δ

∫ T

0

∫
Ω
%γ+1
ε,δ dxdt,

allow us to conclude the nonpositivity of the upper bound in (1).
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Finally, Feireisl (1999) showed that (%,u) is a renormalized solution
even if the density is not square integrable, by obtaining estimates
on the possible density oscillations that can occur in the limit
passage. In particular, introducing the oscillations defect measure

oscp[%δ → %](O) := sup
k≥1

(
lim sup
n→∞

∫
O
|Tk(%δ)− Tk(%)|pdvdt

)
.
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Lecture 4: Fundamental Techniques

Some fundamental techniques
How do we deal with non-linearities?

The Div-Curl Lemma: One of the major discoveries of the
compensated compactness theory. [Tartar (1975), Murat]

Weak continuity of the effective viscous pressure: The
quantity

Peff = p − (2µ+ λ) div u

is known as effective viscous pressure.

⇓
Strong convergence of the fluid density

Aubin-Lions lemma
⇓

Strong convergence of the particle density
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Lecture 4: Fundamental Techniques

Multipliers Technique: relies on employing special test
functions (solutions of an elliptic problem) in the weak
formulation of the momentum equation.

⇓
Increase the integrability of the pressure.
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Lemma (Div-Curl Lemma)

Let Ω ⊂ RN be a domain. Let Un and Vn two sequences of vector
functions such that

Un → U weakly in Lp(Ω;RN) (2)

Vn → V weakly in Lq(Ω;RN). (3)

with
1

p
+

1

q
≤ 1, 1 < p, q <∞.

Furthermore, let{
divx Un = 0 in D′(Ω) for n = 1, 2, . . .

Vn = ∇Gn, withGn bounded inW 1,q(Ω).

Then
Un · Vn → U · V inD′(Ω).
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Proof of the Simplified Div-Curl Lemma

Up to a subsequence

Gn → G weakly in W 1,q, where ∇G = V.

Taking arbitrary test function ϕ ∈ D(Ω), we have∫
Ω
ϕUn · Vn dx =

∫
Ω
ϕUn · ∇Gn dx = −

∫
Ω
GnUn · ∇ϕ dx

where the most right integral tends to

−
∫

Ω
GU · ∇ϕdx =

∫
Ω
ϕU · V dx .
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Aubin-Lions lemma

Lemma

Let X0,X and X1 be three Banach spaces with X0 ⊂ X ⊂ X1.
Suppose that X0 is compactly embedded in X and that X is
continuously embedded in X1. For 1 ≤ p, q ≤ +∞, let

W = {u ∈ Lp([0,T ];X0), u̇ ∈ Lq([0,T ];X1)}.

(i) If p < +∞, then the embedding of W into Lp([0,T ];X1) is
compact.
(ii) If p = +∞ and q > 1, then the embedding of W into
C ([0,T ];X ) is compact.
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A consequence of Aubin-Lions lemma

Lemma

Let X ⊂ B ⊂ Y be Banach spaces with X ⊂ B compactly. Then,
for 1 ≤ p <∞, {v : v ∈ Lp(0,T : X ), vt ∈ L1(0,T ;Y )} is
compactly embedded in Lp(0,T ;B).

Proof.

For the proof we refer to Simon (1987).
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Thus, applying Aubin-Lions Lemma with p = 2, X = W 1, 3
2 (Ω),

B = L3/2(Ω), and Y = L1(Ω) we arrive at

{η}n,ε → ηδ in L2(0,T ; L3/2(Ω)). (4)
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Vanishing viscosity limit

The next step is to let the parameter ε vanish and demonstrate
that the solution (%ε,uε, ηε), constructed in the previous step,
converges to (%δ,uδ, ηδ).
Challenge: At this stage, we lose control of %ε in a positive
Sobolev space. Demostrating strong compactness for %ε is the key
in order to pass to the limit in the nonlinear terms.
More challenges:

The energy inequality provides bounds for the pressure
p(%ε) + δ%ε in L1((0,T )× Ω). This is estimate is not strong
enough to prevent concentration phenomena.
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The following lemma provides necessary pressure estimates.

Lemma

There exists a nonnegative constant c, independent of ε, such that∫ T

0

∫
Ω
%α+1
ε dxdt ≤ c .

Proof.

We postpone the proof for later.
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Strong convergence of the density

There are two key results needed to obtain the strong convergence
of the density:

• establishing the weak continuity of the effective viscous
pressure, and
• renormalizing the continuity equation both at the level of the

approximate solution and the limiting solution. The former is
originally due to Lions [54] and asserts that the effective
viscous pressure, defined as

Peff = p − (2µ+ λ) divx u,

satisfies a weak continuity property in the sense that its
product with another weakly converging sequence converges
to the product of the weak limits.

The latter result allows us to deduce that if % satisfies the
continuity equation, then so does a suitable nonlinear composition
B(%), up to minor modification of the equation.
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Riesz operator

To this end, we introduce the Riesz integral operator, R :

Ri [v ](x) ≡ (−∆)−1/2∂xi = c lim
ε→0

∫
ε≤|y|≤ 1

ε

v(x− y)
yi
|yN+1|

dy.

or, equivanelntly, in terms of its Fourier symbol,

Ri (ξ) =
iξ

|ξ|
, i = 1, . . . ,N.

Lemma (Calderon and Zygmund Theorem)

The Riesz operator Ri , i = 1, . . . ,N defined above is a bounded
linear operator on Lp(RN) for any 1 < p <∞.
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Commutators involving the Riesz Operator -
Weak convergence

Theorem

Let

Un → U weakly in Lp(Ω;RN) (5)

Vn → V weakly in Lq(Ω;RN). (6)

with 1
p + 1

q = 1
s ≤ 1. Then,

Vε · R[Uε]−R[Vε] ·Uε → V · R[U]−R[V] ·U

weakly in Ls(RN).
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Proof of Commutator’s Theorem

Writing

Vε·R[Uε]−R[Uε]·Vε = (Vε −R[Vε])·R[Uε]−(Uε −R[Uε])·R[Vε]

we can easily check that

divx(Vε −R[Vε]) = divx(Uε −R[Uε]) = 0,

while R[Uε],R[Vε], are gradient, in particular

curlxR[Uε] = curlxR[Vε] = 0.

The desired conclusion follows from the Div-Curl Lemma.
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Thus, the only terms to consider in the momentum and energy
balances are the pressure-related terms. First, using the Bogovskii
operator B, analogous to the inverse divergence, the test function
w := ψϕ where ψ ∈ C∞c (0,T ), ϕ := B[%ε − %] where
% := 1

|Ω|
∫

Ω %ε dx in the approximate momentum equation and
performing some analysis:∫ T

0
ψ

∫
Ω

(a%γε +ηε+δ%αε )%ε dx dt =

∫ T

0
ψ%

∫
Ω
a%γε +ηε+δ%αε dx dt

−
∫ T

0
ψ

∫
Ω
%εuε · ∂tϕdx dt −

∫ T

0
ψ

∫
Ω
%εuε ⊗ uε : ∇ϕdx dt

+

∫ T

0
ψ

∫
Ω
S(∇uε) : ∇ϕdxdt +

∫ T

0
ψ

∫
Ω

(β%ε + ηε)∇Φ · ϕdx dt

−
∫ T

0
ψ′
∫

Ω
%εuε · ϕdx dt + ε

∫ T

0
ψ

∫
Ω
∇%ε∇uε · ϕdx dt.
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Similarly, the test function

ψζϕ2 with ϕ2 := ∇∆−1(1Ω%)

is used in the weak limit of the approximate (level-ε) momentum
equation, to obtain:
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∫ T

0

∫
Ω
ψζ((a%γ + η + δ%α)δ%δ − S(∇uδ) : RT (1Ω%δ))dxdt

=

∫ T

0

∫
Ω
ψζ(%δu + δ · RT (1Ω%δuδ)− (%δuδ ⊗ uδ) : RT (1Ω%δ))dxdt

+

∫ T

0

∫
Ω
ψζ(β%δ + ηδ)∇Φ · ∇∆−1(1Ωuδ)dxdt

−
∫ T

0

∫
Ω
ψ(a%γ + η + δ%α)δ∇ζ · ∇∆−1(1Ω%δ)dxdt

+

∫ T

0

∫
Ω
ψS(∇uδ) : ∇ζ ⊗∇∆−1(1Ω%δ)dxdt

−
∫ T

0

∫
Ω
ψ(%δuδ ⊗ uδ : ∇ζ ⊗∇∆−1(1Ω%δ)dxdt

−
∫ T

0

∫
Ω
ζ%δuδ∂tψ · ∇∆−1(1Ω%δ)dxdt.
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From the convergence results stated earlier and the fact that from
the theory of elliptic problems the operator ∇∆−1 gains a spatial
derivative, i.e., due to the embedding W 1,α(Ω) ↪→ C (Ω),

∇∆−1(1Ω%ε)→ ∇∆−1(1Ω%δ)

in C ([0,T ]× Ω;R3). Thus, taking the limit as ε→ 0 in the
previous two equations, it follows that

lim
ε→0

∫ T

0

∫
Ω
ψζ((a%γε + ηε + δ%αε )%ε − S(∇uε) : RT (1Ω%ε))dxdt

=

∫ T

0

∫
Ω
ψζ(a%γ + η + δ%α)δ%δ − S(∇uδ) : RT (1Ω%δ))dxdt

+ lim
ε→0

∫ T

0

∫
Ω
ψζ(%εuε · RT (1Ω%εuε)− (%εuε ⊗ uε) : RT (1Ω%ε))dxdt

−
∫ T

0

∫
Ω
ψζ(%δuδ · RT (1Ω%δuδ)− (%δuδ ⊗ uδ) : RT (1Ω%δ))dxdt.
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The goal now is to show that the difference of the last two
integrals above vanishes when the limit for ε is taken. This follows
from the Commutators’s lemma:

Lemma

Let Vε → V weakly in Lp(R3;R3) and rε → r weakly in Lq(R3).
Define s such that

1

p
+

1

q
=

1

s
< 1.

Then
rεRT (Vε)−RT (rε)Vε → rRT (V)−RT V

weakly in Ls(R3;R3).
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Using the Commutator Lemma and some analysis, the weak
compactness identity for the pressure is derived:

[(a%γ + η + δ%α)%]δ −
(

4

3
µ+ λ

)
(% div u)δ

= (a%γ + η + δ%α)δ%δ −
(

4

3
µ+ λ

)
%δ div uδ.

By multiplying the approximate continuity equation by
G ′(%ε) = %ε ln %ε noting that G is a smooth convex function,
integrating by parts, and taking the weak limit we obtain after
some analysis, that

(% ln %)δ = %δ ln %δ

which since z 7→ z ln z is strictly convex, implies that %ε → %δ
almost everywhere on (0,T )× Ω.
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Pressure Estimates
Challenge:

The central problem of the mathematical theory of the N-S system
is to control the pressure. Under the constitutive relations
presented here, the pressure p is a priori bounded in L1(Ω)
uniformly with respect to time.

‖p‖L1((0,T ;L1(Ω)) ≤ c0(E0, S0,Bf ,T ).

The non-reflexive Banach space L1 is not convenient as bounded
sequences are not necessarily weakly pre-compact; more precisely,
concentration phenomena may occur to prevent bounded sequences
in this space from converging weakly to an integrable function.
Our goal here to find a priori estimates for p in the weakly closed
reflexive space Lq((0,T )× Ω)) for a certain q > 1.

Idea: Compute p by means of the momentum equation and use
the available estimates in order to control the remaining terms.
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Local pressure estimates
Idea:

Compute the pressure p in the momentum equation and use the
energy estimates already available. Applying the divergence
operator to the momentum equation we obtain:

∆%γ = divx divx S− divx divx(%u⊗ u)−∆η − ∂t divx(%u)

+ divx(%β + η)∇Φu. (7)

Since we already know about the space setting for the quantities
{%, %u, %u⊗ u,S}, relation (7) can be viewed as an elliptic equation
to be resolved with respect to the pressure p to obtain an estimate

p ∈ Lr ((0,T )× Ω) for r > 0.
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The most problematic term is certainly

∂t∆
−1 divx(%u)

for which there are no estimates available.
Here, the idea is to use the fact that % is a renormalized solution
of the continuity equation. In that case, we can use (7) to obtain∫ T

0

∫
Ω
ψpB(%) dxdt

≈ bounded terms +

∫ T

0

∫
Ω
∂tψ(∆−1 divx)[%u]B(%) dxdt

+

∫ T

0

∫
Ω
∂tψ(∆−1 divx)[%u]∂tB(%)dxdt,

for any ψ ∈ D(0,T ), where
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∂tB(%) = −b(%) divx u− divx(B(%)u).

In other words, if we succeed to make this formal procedure
rigorous, we get pressure estimates of the form

pB(%) bounded in L1
loc((0,T )× Ω)

for a suitable function B.
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Riesz operator

To this end, we introduce the Riesz integral operator, R :

Ri [v ](x) ≡ (−∆)−1/2∂xi = c lim
ε→0

∫
ε≤|y|≤ 1

ε

v(x− y)
yi
|yN+1

dy.

or, equivanelntly, in terms of its Fourier symbol,

Ri (ξ) =
iξ

|ξ|
, i = 1, . . . ,N.

Lemma (Calderon and Zygmund Theorem)

The Riesz operator Ri , i = 1, . . . ,N defined above is a bounded
linear operator on Lp(RN) for any 1 < p <∞.
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Lemma

Let {%δ,uδ, ηδ}δ>0 be a sequence of artificial pressure solutions.
Then, there exists a constant c(T ), independent of δ, such that∫ T

0

∫
Ω
%γ+θ
δ dxdt ≤ c(T ),

where Θ = min{2
3γ − 1, 1

4}.
If Ω is unbounded, then ∇xΦ is no longer integrable and we cannot
simply apply existing results. To prove the bound in this case, let
∆−1 be the inverse Laplacian realized using Fourier multipliers.
For each fixed δ > 0, let the test-function vδ be given as

vδ = ∇∆−1%θδ .
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Thus,
vδ ∈b L∞(0,T ;W 1,s(Ω)) ∩ L∞(0,T ; L∞(Ω)).

Next, since (%δ,uδ) is a renormalized solution to the continuity
equations, with B(%δ) = %θδ states

∂t%
θ
δ = − div(%θδu)− (θ − 1)%θδ div u,

in the sense of distributions on (0,T )× Ω. For notational
convenience, we observe that

‖∂tvδ‖Lp(0,T ;Lq(Ω)) = ‖∇∆−1∂t%
θ
δ‖Lp(0,T ;Lq(Ω))

≤ ‖%θδuδ‖Lp(0,T ;Lq(Ω)) + ‖%θ div u‖Lp(0,T ;Lr (Ω)),

for appropriate 1 ≤ p, q ≤ ∞ and r∗ = q.
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Next, we apply vδ as test function for the momentum equation to
obtain ∫ T

0

∫
Ω
a%γ+θ
δ dxdt

= −
∫ T

0

∫
Ω

(%δuδ)∂tvδ + %δuδ ⊗ uδ : ∇vδ dxdt

+

∫ T

0

∫
Ω
µ∇uδ∇vδ + λ div uδ div vδ dxdt

−
∫ T

0

∫
Ω
ηδ%

θ
δ − (%δβ + ηδ)∇Φδvδ dxdt −

∫
Ω

m0vδ(0, ·) dx

:= I1 + I2 + I3.
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Next, we apply vδ as test function for the momentum equation to
obtain∫ T

0

∫
Ω
a%γ+ϑ
δ dxdt = −

∫ T

0

∫
Ω

(%δuδ)∂tvδ + %δuδ ⊗ uδ : ∇vδ dxdt

+

∫ T

0

∫
Ω
µ∇uδ∇vδ + λ div uδ div vδ dxdt

−
∫ T

0

∫
Ω
ηδ%

θ
δ − (%δβ + ηδ)∇Φδvδ dxdt

:= I1 + I2 + I3.
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To conclude it remains to bound I1, I2, and I3, independently of δ.
We start with the I1 term:

|I1| :=

∣∣∣∣∫ T

0

∫
Ω
%δ∂tv + %δuδ ⊗ uδ : ∇vδdxdt

∣∣∣∣
≤ ‖%δuδ‖

L∞(0,T :L
2γ
γ+1 (Ω))

‖%θδuδ‖
L1(0,T ;L

2γ
γ−1 (Ω))

+ ‖%δuδ‖L2(0,T :Lm2 (Ω))C (T )‖%θ div u‖L2(0,T ;Lr (Ω))

+ ‖%δuδ ⊗ uδ‖L2(0,T ;Lc2 (Ω))‖∇vδ‖L2(0,T ;Lc
′
2 (Ω))

,

where

r =
6γ

3γ − 6 + 4γ
, r∗ = (m2)′, c ′2 =

3γ

2γ − 3
≤ s.
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Now, we estimate

‖%θδuδ‖
L1(0,T ;L

2γ
γ−1 )
≤ C (T )‖%θδ‖L∞(0,T ;Ls(Ω))‖uδ‖L2(0,T ;L2∗ (Ω),

‖%θδ div uδ‖L2(0,T ;Lr (Ω)) ≤ C‖ div uδ‖L2(0,T ;L2(Ω))‖%θδ‖L∞(0,T ;Ls(Ω)),

and hence conclude that

|I1| ≤ C (T ).
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Next, we easily deduce the bound

|I2| ≤ C (T ),

and it only remains to bound I3.

|I3| ≤ ‖ηδ‖L2(0,T ;L3/2(Ω))‖%
θ‖

L2(0,T ;L
3
2 (Ω))

+ ‖(β%δ + ηδ)∇Φ‖L1(0,T ;L1(Ω)) ‖vδ‖L∞(0,T ;L∞(Ω))

≤ C (T )
(

1 + ‖(β%δ + ηδ)∇Φ‖L∞(0,T ;L1(Ω))

)
.
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Using the energy estimate and the requirements on the potential,
we readily deduce

sup
t∈(0,T )

∫
Ω
|β%δ + ηδ||∇Φ| dx

≤ ‖∇Φ‖L∞(B(0,R)) sup
t∈(0,T )

∫
B(0,R)

β%δ + ηδ dx

+ C sup
t∈(0,T )

∫
Ω\B(0,R)

(β%δ + ηδ)Φ dxdt ≤ C (T ),

which brings the proof to an end.
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Artificial pressure limit

At the previous step, the key in renormalizing the continuity
equation was using the integrability gain from the artificial pressure
to ensure that %ε was bounded in L2(0,T ; L2(Ω)). Having lost this
integrability through the passage δ → 0 and since we require that
γ > 3

2 , we proceed by defining the oscillation defect measure. our
assumption that the pressure is given by p(%) = %γ for γ > 3

2 The
oscillations defect measure is defined as

oscp[%δ → %](O) := sup
k≥1

(
lim sup
n→∞

∫
O
|Tk(%δ)− Tk(%)|pdvdt

)
.
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The oscillation defect measure

oscp[%δ → %](O) := sup
k≥1

(
lim sup
n→∞

∫
O
|Tk(%δ)− Tk(%)|pdvdt

)
.

The functions Tk are cuttoff functions defined by

Tk(z) := kT
( z
k

)
where T is such that for nonnegative arguments, T (z) = z for
z ∈ [0, 1], T (z) = 2 for z ≥ 3, and a smooth extension is used over
the interval [0, 2].
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The validity of the weak continuity of the effective viscous pressure
implies that the oscillations defect measure is bounded:

oscγ+1[%δ → %](O) ≤ c(|O|).

⇓

%δ → % strongly in L1((0,T )× Ω).
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Relative entropy representation for the
Navier-Stokes-Smoluchowski system

In the spirit of Dafermos (1979), given an entropy E(U) we can
define the relative entropy by

H(U|U) := E(U)− E(U)− DE(U) · (U − U) (8)

where D stands for the total differentiation operator with respect
to %,m, and η. In the present context,

U =

 %
m := %u

η

 , U =

 r
m := rU

s


and

E(U) :=
|m|2

2%
+

a

γ − 1
%γ + η ln η + (β%+ η)Φ. (9)
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Thus, from the definition, the relative entropy is

H(U|U) =
|m|2

2%
+

a

γ − 1
%γ + η ln η + (β%+ η)Φ

−|m|
2

2r
− a

γ − 1
rγ − s ln s − (βr + s)Φ

−

− |U|
2

2 + aγ
γ−1 r

γ−1 + βΦ

U
ln s + 1 + Φ

 ·
 %− r
%u− rU
η − s


=
%|u|2

2
+

a

γ − 1
%γ + η ln η + β%Φ + ηΦ

− r |U|2

2
− a

γ − 1
rγ − s ln s − βrΦ− sΦ

+
%|U|2

2
− r |U|2

2
− aγ

γ − 1
rγ−1%+

aγ

γ − 1
rγ − β%Φ + βrΦ

−%u ·U + r |U|2 − η ln s + s ln s − η + s − ηΦ + sΦ (10)
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After some basic calculations, the relative entropy is calculated to
be

H(U|U) =
%

2
|u−U|2 +

a

γ − 1
(%γ − rγ)− aγ

γ − 1
rγ−1(%− r)

+η ln η − s ln s − (ln s + 1)(η − s), (11)

or equivalently,

H(U|U) =
%

2
|u−U|2 + EF (%, r) + EP(η, s),

where

EF (%, r) := HF (%)− H ′F (r)(%− r)− HF (r)

EP(η, s) := HP(η)− H ′P(s)(η − s)− HP(s)

HF (%) :=
a

γ − 1
%γ , HP(η) := η log η, PF = H ′F , PP = H ′P .
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Letting
r = r(t, x), U = U(t, x), s = s(t, x)

be smooth functions on [0,T ]×Ω with r , s > 0 on [0,T ]×Ω and

U|∂Ω = 0,

it is shown in Section 3 that for smooth {%,u, η},∫
Ω

1

2
%|u−U|2 + EF (%, r) + EP(η, s) dx(τ)

+

∫ τ

0

∫
Ω

[S(∇u)− S(∇U)] : ∇(u−U) dx dt

≤
∫

Ω

1

2
%0|u0−U0|2+EF (%0, r0)+EP(η0, s0)dx+

∫ τ

0
R(%,u, η, r ,U, s) dt

(12)
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where

R(%,u, η, r ,U, s)

:=

∫
Ω

div(S(∇U)) · (U− u) dx −
∫

Ω
%(∂tU + u · ∇U) · (u−U)dx

−
∫

Ω
∂tPF (r)(%− r) +∇PF (r) · (%u− rU) dx

−
∫

Ω
[%(PF (%)− PF (r))− EF (%, r)] div U dx

−
∫

Ω
∂tPP(s)(η − s) +∇PP(s) · (ηu− sU) dx

−
∫

Ω
[η(PP(η)− PP(s))− EP(η, s)] div U dx

−
∫

Ω
∇(PP(η)− PP(s)) · (∇η + η∇Φ) dx

−
∫

Ω
(β%+ η)∇Φ · (u−U) dx −

∫
Ω

η∇s
s
· (u−U) dx . (13)
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Free energy solutions

{%,u, η} is an admissible free energy solution of Problem D,
supplemented with the initial data {%0,u0, η0} provided that

% ≥ 0, u is a renormalized solution of the continuity
equation,that is,∫ T

0

∫
Ω

(%B(%)∂tϕ+ %B(%)u · ∇xϕ− b(%) div uϕ) dxdt

= −
∫

Ω
%0B(%0)ϕ(0, ·)dx

holds for any test function ϕ ∈ D([0,T )× Ω) and suitable b
and B.

The balance of momentum holds in distributional sense. The
velocity field u belongs to the space L2(0,T ;W 1,2(Ω;R3)),
therefore it is legitimate to require u to satisfy the boundary
conditions in the sense of traces.
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η ≥ 0 is a weak solution of the Smoluchowski equation. That
is, ∫ ∞

0

∫
Ω
η∂tϕ+ ηu · ∇ϕ− η∇Φ · ∇ϕ−∇η∇ϕdxdt

= −
∫

Ω
η0ϕ(0, ·)dx

is satisfied for test functions ϕ ∈ D([0,T )× Ω̄) and any
T > 0. In particular,

η ∈ L2([0,T ]; L3/2(Ω)) ∩ L1(0,T ;W 1, 3
2 (Ω))
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Given the total free-energy of the system by

E (%,u, η)(t) :=

∫
Ω

(
1

2
%|u|2 +

a

γ − 1
%γ + η log η + (β%+ η)Φ

)
,

then E (%,u, η)(t) is finite and bounded by the initial energy
of the system

E (%,u, η)(t) ≤ E (%0,u0, η0) a.e. t > 0

Moreover, the following free energy-dissipation inequality holds∫ ∞
0

∫
Ω

(
µ|∇u|2 + λ| div u|2 + |2∇√η +

√
η∇Φ|2

)
dt

≤ E (%0,u0, η0)
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Definition

{%,u, η} is a weakly dissipative solution of the NSS system with
initial data {%0,u0, η0} if and only if

{%,u, η} is a weak solution in the sense of Definition above∫
Ω

1

2
%|u|2 +

a

γ − 1
%γ + η ln η + ηΦ dx(τ)

+

∫ τ

0

∫
Ω
S(∇u) : ∇u + |2∇√η +

√
η∇Φ|2dx dt

=

∫
Ω

1

2
%0|u0|2 +

a

γ − 1
%γ0 + η0 ln η0 + η0Φ dx

− β
∫ τ

0

∫
Ω
%u · ∇Φ dx dt. (14)

{%,u, η} obeys inequality (12) for any suitably smooth
functions {r ,U, s} .
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Existence of Weakly Dissipative Solutions

Theorem (Weakly dissipative solutions)

Let us assume that (Ω,Φ) satisfy the confinement hypotheses
(HC) with Ω ⊂ R a bounded domain of class C 2+ν , ν > 0.
Suppose the initial data {%0,u0, η0} satisfy

0 < %0 ∈ Lγ(Ω), %0|u0|2 ∈ L1(Ω), andη0 log η0 ∈ L1(Ω).

Then the NSS system has a weakly dissipative solution in the sense
of the Definition above.
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Approximation Scheme

The weakly dissipative solutions are constructed using a three-level
approximation scheme. Specifically, a family of finite dimensional
spaces Xn for n ∈ N consisting of smooth vector-valued functions
on Ω vanishing of ∂Ω is considered.

∂t%n + div(%nun) = ε∆%n (15)

∂tηn + div(ηnun − ηn∇Φ) = ∆ηn (16)∫
Ω
∂t(%nun) ·wdx =

∫
Ω
%nun⊗un : ∇w + (a%γn + ηn + δ%αn ) div wdx

−
∫

Ω
S(∇un) : ∇w+ε∇%n ·∇un ·wdx−

∫
Ω

(β%n+ηn)∇Φ·wdx (17)

for any w ∈ Xn, where Xn is a finite dimensional space and α is
suitably large exponent.
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Boundary conditions:

∇%n · n = 0 on (0,T )× ∂Ω

un = ∇ηn · n + ηn∇Φ · n = 0 on (0,T )× ∂Ω.

For notational simplicity, {%n,un, ηn} will denote
{%n,ε,δ,un,ε,δ, ηn,ε,δ} and {%ε,uε, ηε} will denote {%ε,δ,uε,δ, ηε,δ}
Here, ε, δ > 0 are small and α is an appropriate constant. The
approximation scheme is also supplemented by the approximate
initial data {%0,δ,m0,δ, η0,δ}.
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The approximate initial data are modifications of the original initial
data in that

0 < δ ≤ %0,δ ≤ δ−1/2α for all x ∈ Ω, %0,δ → %0 in Lγ(Ω),
and |{x ∈ Ω|%0,δ(x) < %0(x)}| → 0 as δ → 0.

m0,δ(x) is the same as m0(x) unless %0,δ(x) < %0(x), in which
case m0,δ(x) = 0.

0 < δ ≤ η0,δ ≤ δ−1/2α for all x ∈ Ω, η0,δ → η0 in L2(Ω),
and |{x ∈ Ω|η0,δ(x) < η0(x)}| → 0 as δ → 0.
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Approximate Relative Entropy Inequality

Strategy.

We use the approximate difference un −Um as a test function
in the approximate momentum equation (17).

This difference and its quandratic form are employed in the
construction of the approximate relative entropy functional.

By monitoring the evolution in time of this functional we
obtain first the approximate relative inequality (18), and
subsequently, by passing to the limit, we obtain the existence
of weakly dissipative solutions.
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d

dt

∫
Ω

1

2
%n|un −Un|2 + EF (%n, rm) + EP(ηn, sm)dx

+

∫
Ω

[S(∇un)− S(∇Um)] : ∇(un −Um)dx +
δ

α− 1

d

dt

∫
Ω
%αndx

≤
∫

Ω
div(S(∇Um)) · (un −Um)dx

−
∫

Ω
%n(∂tUm + un · ∇Um) · (un −Um)dx

−
∫

Ω
∂tPF (rm)(%n − rm) +∇PF (rm) · (%u− rmUm)dx

−
∫

Ω
[%n(PF (%n)− PF (rm))− EF (%n, rm)] div Umdx

−
∫

Ω
∂tPP(sm)(ηn − sm) +∇PP(sm) · (ηnun − smUm)dx

−
∫

Ω
[ηn(PP(ηn)− PP(sm))− EP(ηn, sm)] div Umdx

−
∫

Ω
∇(PP(ηn)− PP(sm)) · (∇ηn + ηn∇Φ)dx

−
∫

Ω
(β%n + ηn)∇Φ · (un −Um)dx −

∫
Ω

ηn∇sm
sm

· (un −Um)dx

+ ε

∫
Ω
∇%n ·Um · ∇(un −Um)−∇(PF (%n)− PF (rm)) · ∇%ndx

− δ
∫

Ω
%αn div Umdx (18)
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A Weak-Strong Uniqueness Result for the NSS system

Motivated by Dafermos’ theory of Relative Entropy (1979),
and several recent results by Berthelin and Vasseur (2005), and
Mellet and Vasseur (2007), we consider a class of weak solutions
satisfying the relative entropy inequality and show that the latter
may be used to derive various weak-strong uniqueness results in
this class of solutions.
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Energy Functional and Relative Entropy

E (%, r , η, s) = EF (%, r) + EP(η, s)

EF (%, r) :=
a%γ

γ − 1
− aγrγ−1

γ − 1
(%− r)− arγ

γ − 1

EP(η, s) := η ln η − (ln s + 1)(η − s)− s ln s

where r and s are smooth functions on [0,T ]× Ω̄ s.t.

r , s > 0 on [0,T ]× Ω̄

and U is smooth om [0,T ]× Ω̄ and U|∂Ω = 0.
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Relative Entropy Inequality for the Fluid Particle System∫
Ω

(
1

2
%|u−U|2 + E (%, r , η, s) + [β(%− r) + (η − s)]Φ

)
(τ, ·)dx

+

∫ τ

0

∫
Ω

(S(∇u)− S(∇U)) : ∇(u−U)dxdt

+

∫ τ

0

∫
Ω
|2(∇√η −∇

√
s) + (

√
η −
√
s)∇Φ|2dxdt

≤
∫

Ω

(
1

2
%0|u0 −U0|2 + E (%0, r0, η0, s0) + [β(%0 − r0) + (η0 − s0)]Φ

)
dx

+

∫ τ

0
R(%,u, η, r ,U, s)dt

for any smooth r ,U, s.
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Weak-Strong Uniqueness Result

Using the relative entropy inequality, we show that a weak solution
to the NSS system with certain extra regularity properties is the
same as the suitable weak solution with the same initial data.
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Moving Domains
Generalized penalty methods. Motivation.

A popular class of methods to deal with moving domains are the
so-called generalized penalty methods.

Incompressible fluids. Consider the Navier-Stokes equations for
an incompressible fluid in a domain containing an obstacle. Let D
be an open set containing the obstacle Ω̃, that is, Ω̃ ⊂ D and the
set D \ Ω̃ is filled with incompressible fluid.
Strategy: Whereas normally the fluid equations are posed strictly
in the fluid domain D \ Ω̃, we instead add a singular term to the
momentum equation and pose the Navier-Stokes equations over
the entire domain D as follows:
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{
∂tu + u · ∇u +∇P = ∆u− 1

ε1Ω̃u,

div u = 0 in (0,T )× D.
(19)

The term 1
ε1Ω̃u added in the momentum equation is the penalty

term, where ε is a small parameter tending to zero and 1Ω̃ denotes

the characteristic function of the domain Ω̃. In the limit as ε→ 0,
the penalization forces u = 0 in the obstacle domain Ω̃ and u
satisfies the standard Navier-Stokes in the true fluid domain D \ Ω̃.
Indeed, formally expanding the velocity as

u = u0 + εu1 + O(ε2),
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and plugging into the momentum equation in (19), we can match
orders of ε to deduce:

O(1/ε) : 1Ω̃u0 = 0,

O(1) : ∂tu0 + u0 · ∇u0 +∇P = ∆u0 − 1Ω̃u1.

This implies the leading order term u0 vanishes in Ω̃, satisfies the
standard Navier-Stokes equations in D \ Ω̃, and in addition the
correction u1 satisfies the Darcy law in the obstacle domain

u1 +∇P = 0, in (0,T )× Ω̃.
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Global Existence: Moving Domains

∂t%+ divx(%u) = 0

∂t(%u) + divx(%(u⊗ u) +∇x(p(%) + η)− µ∆u− λ∇xdivxu

= −(η + β%)∇Φ,

∂tη + div(η(u−∇Φ))−∆η = 0.

% = %(t, x) – total mass density t – time, x ∈ Ω ⊂ R3

u = u(t, x) – velocity field

η = η(t, x) – the density of the particles
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p(%) = a%γ a > 0, γ > 1, β 6= 0

Φ external potential

µ > 0, λ +
2

3
µ ≥ 0 viscosity parameters

β > 0 if Ω is unbounded
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Objective:

The global existence of weak solutions within a moving domain
Ωt .

The result is established via a penalization technique. The main
components of this method are:

the introduction of a singular term in the momentum equation
(the so-called Brinkman penalization)

the penalization of the viscosity.

From a modeling perspective these terms model the solid portions
of domain as porous media, with permeability approaching zero.
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Strategy:

Enclose the moving domain within a fixed domain such that
the fluid is allowed to flow through solid obstacles.

Penalization of the viscosity is used to get rid of extra shear
terms that appear in the solid portion of the domain.

A key ingredient is getting rid of the terms supported on the
solid part of the domain.
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Assumptions on the spatial domain

• Let Ω0 ⊂⊂ D ⊂ R3 denote a domain contained in the fixed
domain D, also known as the universal domain. At a later
time t > 0, the initial domain Ω0 has moved to the new
position Ωt .

• The family {Ωt}Tt=0 then forms a one-parameter
transformation of the domain Ω0. We assume that each
image is compactly contained within D. The boundary ∂Ωt is
denoted by Γt .

• The boundary of the domain Ωt occupied by the fluid and the
particles is described by means of a given velocity field
V(t, x), where t ≥ 0 and x ∈ R3.
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Assumptions on the boundary

When viewed as a subset of [0,T ]× D, moving spatial domains
form non-cylindrical space-time domains. In this context, we define
the fluid space-time domain Q f by

Q f :=
⋃

t∈(0,T )

({t} × Ωt).

The set
Qs := ((0,T )× D) Q f ,

is often called the solid domain.
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The evolution of the domain is characterized by a prescribed
velocity field V(t, vcx) defined over (0,T )× D. The velocity field
allows us to define the position X(t, x) as

d

dt
X(t, x) = V(t,X(t, x)), t > 0,

X(0, x) = x, x ∈ Ω0.
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The domains therefore evolve according to

Ωt = X(t, x)(t,Ω0).

Furthermore, V is assumed to have the following regularity

V ∈ C 2+ν([0,T ]× D;R).
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We also define here the “solid” part of the domain,

Qs = ((0,T )× D)\Q f .

The no-slip boundary conditions on the solid wall are imposed

u(t, ·)
∣∣
Γt

= V(t, ·)
∣∣
Γt
, for any t ≥ 0. (20)

In addition, a no-flux condition for particle density holds,

(∇η + η∇Φ) · ν = 0 on (0,T )× Γt . (21)



Models in Continuum Physics

Weakly dissipative solutions

The Function Spaces

With an evolving spatial domain, the function spaces in which
solutions are looked for need to be modified accordingly. Consider
for example the heat equation

ut −∆u = 0, (0,T )× Ω,

supplemented with Dirichlet boundary data. Weak solutions as
typically sought in the Bochner spaces

u ∈ L2(0,T ;H1
0 (Ω)), ut ∈ L2(0,T ;H−1(Ω)).

The functions u : (0,T )→ H1
0 (Ω) therefore are valued in the fixed

space H1
0 (Ω).

Important point: In the case of moving domains, the interval
(0,T ) should get mapped to the full range of spaces, for instance⋃

({t} × H1
0 (Ωt)).
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The way to do this is as follows:
“Embed functions into the global space and extend by zero
outside the moving domains Ωt .”
We define:

Lp,q(Q f ) ≡ Lp(0,T ; Lq(Ωt)) :=

{u ∈ Lp(0,T ; Lq(D))|u(t, ·) = 0 over D \ Ωt for a.e. t ∈ (0,T )} ,

with the norm

‖u‖Lp,q(Q f ) :=


(∫ T

0 ‖u(t)‖pLq(Ωt)
dt
) 1

p
, if p <∞,

ess supt∈(0,T ) ‖u(t)‖Lq(Ωt), if p =∞.

The spaces Lp,q(Q f ) are Banach spaces.
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Let l ∈ N, and let α be a multi-index. We define

W l
p,q(Q f ) = Lp(0,T ;W l ,q(Ωt)) :={

u ∈ Lp.q(Q f )|∂αu ∈ Lp,q(Q f ), |α| ≤ l
}
.

with the norm

‖u‖W l
p,q(Q f ) :=

∑
|α|≤l

‖∂αu‖Lp,q(Q f ).

The space of functions continuous with respect to the
weak-topology of Lγ(Ωt) is defined by

C ([0,T ]; Lγwk(Ωt) :={
u ∈ C ([0,T ]; Lγwk(D))|u(t, ·) = 0 onD \ Ωt for all t ∈ (0,T )

}
.
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In order to define the space of test functions we need to make use
of the ALE map Tt given by

Tt(x) = X(t, x), for all x ∈ Ω0.

The homeomorphism Tt is used to push the test functions
D([0,T ]× Ω0;RN) to the set (0,T )→ Ωt . Define now

D([0,T ]× Ωt ;RN) :={
u : Q f → R|u(t, x) = û(t,T−1

t (x)), û ∈ D([0,T ]× Ω0;RN)
}
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Weak formulation

The fluid- particle system is given by
∂t%+ divx(%u) = 0

∂t(%u) + divx(%(u⊗ u) +∇x(p(%) + η)− µ∆u− λ∇x divx u

= −(η + β%)∇Φ,

∂tη + div(η(u−∇Φ))−∆η = 0.

(22)
The system is posed on the space-time domain Q f .
The no-slip boundary conditions are imposed on the velocity,

u(t, ·)
∣∣
Γt

= V(t, ·)
∣∣
Γt
, for any t ≥ 0. (23)

In addition, a no-flux condition for particle density holds,

(∇η + η∇Φ) · ν = 0 on (0,T )× Γt . (24)
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Initial data are prescribed such that
%0 ∈ Lγ(D), %0 ≥ 0 a.e. in Ω0.

η0 ∈ L1(D), η0 ≥ 0 a.e. in Ω0.

m0 ∈ L1(D;R3), m0
%0
∈ L1(D),

(25)

and all initial data is assumed to vanish on D \ Ω0.
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Main Result: Theorem.

Theorem

Let Ω0 ⊂⊂ D ⊂ R3 be a bounded domain with boundary of class
C 2+ν, ν > 0. Assume that the pressure p is given by

p(%, η) = %γ + η, with γ > 3/2.

Let V be a given vector field belonging to C 2+ν([0,T ]× D;R3),

V|∂D = 0.

Suppose that the initial data satisfy (25) and all initial data is
assumed to vanish on D \ Ω0. Then, there exists a weak solution
(%,u, η), of Problem (22).
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Strategy

The main ingredients of our approach can be formulated as
follows:

For the construction of a suitable approximating scheme
penalizing the boundary behavior, extra diffusion and
viscosity terms are introduced in the weak formulation. The
central component of this approach is the addition of a
singular term∫ τ

0

∫
Ωt

χ(u− V)

ε
· ϕ dxdt, ε > 0 small, (26)

in the momentum equation. This extra term models solid
obstacles as porous media, with porosity and viscous
permeability approaching zero. Effectively, the problem is
reformulated over a fixed domain such that the fluid is allowed
to “flow” through solid obstacles.
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In addition to (26), we introduce variable shear viscosity
coefficients µ = µω and λ = λω, vanishing outside the fluid
domain and remaining positive within the fluid domain, to
take care of extra stress terms that appear in the solid
domain.
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In constructing the approximating problem we employ a
number of ingredients: a parameter δ which enables us to
introduce an artificial pressure essential for the establishment
of suitable pressure estimates and parameters ε and ω for the
penalization of the boundary behavior and viscosity. Keeping
δ, ε, ω fixed, we solve the modified problem in a (bounded)
reference domain D ⊂ R3 chosen in such a way that

Ωt ⊂ Ωt ⊂ D for any t ≥ 0.

Letting δ → 0 we obtain the solution (%,u, η)ω,ε within the
fixed reference domain.
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We take the initial densities (%0, η0) vanishing outside Ω0, and
letting the penalization ε→ 0 we obtain a “two-phase” model
consisting of the fluid region and the solid region separated
by impermeable boundary. We show that the densities vanish
in the “solid” part of the reference domain, specifically on
((0,T )× D) \ Q f .

The penalization ε is taken to vanish and then we perform the
limit ω → 0.
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Penalization scheme

Denote by χ = χ(t, x) the characteristic function of Qs , that is,

χ(t, x) =

{
0 if t ∈ (0,T ), x ∈ Ωt

1 otherwise
(27)

This function is used to separate the fluid and “solid” domains and
represents a weak solution to the transport equation{

∂tχ+ V · ∇χ = 0

χ(0, ·) = 1D − 1Ω0 .
(28)
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Penalization Scheme

Fix a reference spatial domain D ⊂ R3 containing Ω0. System (22)
is replaced by a penalized problem

∂t%+ div(%u) = 0, (29)

∂t(%u) + div(%u⊗ u) +∇(p(%) + η)− µω∆u− λω∇x divx u =

−(η + β%)∇Φ− 1

ε
χ(u− V) (30)

∂tη + div(η(u−∇Φ))−∆xη = 0. (31)

considered in the cylinder (0,T )× D.
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The penalized problem is supplemented with the boundary
conditions

u
∣∣
∂D

= V
∣∣
∂D

= 0, (32)

(∇η + η∇Φ) · ν
∣∣
∂D

= 0 (33)

with ν denoting the outer normal vector to the boundary ∂D, and
initial conditions

%(0, ·) = %0,ε ≥ 0, (%u)(0, ·) = (%u)0,ε, η(0, ·) = η0,ε ≥ 0, (34)

such that
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%0,ε → %0 in Lγ(D), %0|Ω0 > 0, %0|D\Ω0
= 0, (35)

(%u)0,ε → (%u)0 in L1(D;R3), (%u)0|D\Ω0
= 0, (36)∫

D

|(%u)0,ε|2

%0,ε
dx < c , (37)

η0,ε → η0 in L2(D), η0|Ω0 > 0, η0|D\Ω0
= 0, (38)

where c is independent of ε→ 0.
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In order to eliminate extra stresses that appear we introduce a
variable shear viscosity coefficient µ = µω(t, x) where, µ = µω
remains strictly positive in Q f but vanishes in the complement as
ω → 0, namely µω is taken such that

µω ∈ C∞c
(
[0,T ]× R3

)
, 0 < µ

ω
≤ µω(t, x) ≤ µ in [0,T ]× D,

µω =

{
µ = const > 0 inQ f

µω → 0 a.e. in ((0,T )× D) \ Q f
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We penalize the coefficient λ = λω(t, x) exactly the same way.
Finally we modify the initial data

(%u)0,ε,ω =
|(%u)0,ε,ω|2

%0,ε,ω
= 0, whenever %0,ε,ω = 0.

The weak formulation of the penalized problem reads.
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Weak formulation
[Free energy solutions of the penalized problem]

Assume that (D,Φ) satisfies the confinement hypotheses (HC).
We say that
{%,u, η} is a free-energy solution of problem (29)-(31) with initial
and boundary data satisfying (32)-(34) respectively provided that
the following hold:

ρε,ω ≥ 0 represents a renormalized solution of equation (31)
on a time-space cylinder (0,∞)× D, that is, for any test
function ϕ ∈ D([0,T )× D), any T > 0, and any b such that

b ∈ L∞ ∩ C [0,∞), B(%) = %B(1) + %

∫ %

1

b(z)

z2
dz ,

the following integral identity holds:
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∫ ∞
0

∫
D

(B(%)∂tϕ+ B(%)u · ∇ϕ− b(%) div uϕ) dxdt (39)

=

∫
D
B(%)(T , ·)ϕ(T , ·)dx −

∫
D
B(%0)ϕ(0, ·) dx

The density, velocity, and momentum are required to have the
following regularity

% ∈ L∞(0,T ; Lγ(D), % ≥ 0 a.e. in (0,T )× D,

u ∈ L2(0,T ;W 1,2
0 (D,R3))

%u ∈ L∞(0,T ; L2γ/(γ−1)(D;R3))
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The balance of momentum holds in distributional sense,
namely∫ ∞

0

∫
D

(
%u · ∂tϕ+ %u⊗ u :∇ϕ+ (p(%) + η) divϕ

)
dxdt =

∫ ∞
0

∫
D
(µ∇u + λ div uI) : ∇ϕ− (η + β%)∇Φ · ϕ dxdt

+

∫ ∞
0

∫
D

χ(u− V)

ε
· ϕ dxdt (40)

+

∫
D

(%u)(T , ·) · ϕ(T , ·)dx −
∫
D

(%u)0 · ϕ(0, ·) dx

for any test function ϕ ∈ D([0,T );D(D;R3)) and any T > 0
satisfying ϕ|∂D = 0.
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All quantities appearing in (40) are supposed to be at least
integrable. In particular, the velocity field

u ∈ L2(0,T ;W 1,2(D;R3)),

therefore it is legitimate to require uε,ω to satisfy the boundary
conditions (32) in the sense of traces.



Models in Continuum Physics

Weakly dissipative solutions

The integral identity∫ ∞
0

∫
D
η∂tϕ+ ηuε,ω · ∇ϕ− η∇Φ · ∇ϕ−∇η · ∇ϕ dxdt

=

∫
D
η(T , ·)ϕ(T , ·)dx −

∫
D
η0ϕ(0, ·) dx (41)

is satisfied for test functions ϕ ∈ D([0,T )× D) and any
T > 0. All quantities appearing in (41) must be at least
integrable on (0,T )× D. In particular,

ηε,ω ∈ L2(0,T ;W 1,1(D)) ∩ L1(0,T ;W 1, 3
2 (D)).

η ≥ 0 a.e. in (0,T )× D.
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Given the total free-energy of the system by

E (%,u, η)(t) :=∫
D

(
1

2
%|u|2 +

a

γ − 1
%γ + η log η + (β%+ η)Φ

)
dx ,

E (%,u, η)(t) is finite and the following free energy dissipation
inequality holds

E (%,u, η)(τ)

+

∫ τ

0

∫
D

(µ|∇u|2 + λ| div u|2 + |2∇√η +
√
η∇Φ|2) dxdt

≤ E (%0,u0, η0)−
∫ τ

0

∫
D

χ

ε
(u− V) · udxdt (42)
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Modified energy inequality

Choosing as a test function

ϕ = ψn(t)V, ψn ∈ C∞c [0,T ), ψn → 1[0,τ)

in (40) and adding to the inequality (42), we find that
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Modified energy∫
D

(
1

2
%ε,ω|uε,ω|2 +

a

γ − 1
%γε,ω + ηε,ω log ηε,ω + (β%ε,ω + ηε,ω)Φ

)
(τ, ·)dx

+

∫ τ

0

∫
D

(
µω|∇uε,ω|2 + λ| div uε,ω|2 + |2∇√ηε,ω +

√
ηε,ω∇Φ|2

)
dxdt

+
1

ε

∫ τ

0

∫
D
χ|uε,ω − V|2 dxdt

≤
∫
D

(
1

2

|(%u)0,ε,ω|2

%0,ε,ω
+

a

γ − 1
%γ0,ε,ω + (η log η)0,ε,ω + (β%+ η)0,ε,ωΦ

)
dx

+

∫
D
(%ε,ωuε,ω · V)(τ, ·)− (%u)0,ε,ω · V(0, ·)dx

+

∫ τ

0

∫
D
Sε,ω : ∇V − %ε,ωuε,ω · ∂tV − %ε,ωuε,ω ⊗ uε,ω : ∇V

− (ηε,ω + βρε,ω)∇xΦ · V −
(

a

γ − 1
%γε,ω + ηε,ω

)
div V dxdt

(43)
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Uniform bounds

The modified energy inequality yields uniform bounds on
(ρε,ω,uε,ω, ηε,ω) independent of ε→ 0 provided V is sufficiently
smooth, namely

{√%ε,ωuε,ω}{ε,ω>0} bounded in L∞(0,T ; L2(D;R3)) (44)

{%ε,ω}{ε,ω>0} bounded in L∞(0,T ; Lγ(D)) (45)

{∇uε,ω}{ε,ω>0} bounded in L2(0,T ; L2(D;R3 × R3)) (46)

{div uε,ω}{ε,ω>0} bounded in L2(0,T ; L2(D)) (47)
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{∇√ηε,ω}{ε,ω>0} bounded in L2(0,T ; L2(D;R3)) (48)

In addition,∫ τ

0

∫
D
χ|uε,ω − V|2dx dt =

∫
Qs

|uε,ω − V|2 dxdt ≤ εc, (49)

for a.a. τ ∈ (0,T ) with c independent of ε, ω, where we used the
definition of χ(t, x).
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Using the embedding of W 1,2(D) in L6(D) (since D ⊂ R3) on the
last bound listed above, it is clear that
{ηε,ω}{ε,ω>0} ∈b L1(0,T ; L3(D)). This, and mass conservation
implies

{ηε,ω}{ε,ω>0} ∈b L1(0,T ; L3(D)) ∩ L∞(0,T ; L1(D)). (50)

Using this result, and that

2∇√η =
∇η
√
η
,

it is also clear that

{ηε,ω}{ε,ω>0} ∈b L1(0,T ;W 1, 3
2 (D)) ∩ L2(0,T ;W 1,1(D)). (51)

By Poincaré’s inequality and (46), we get that

{uε,ω}{ε,ω>0} bounded in L2(0,T ;W 1,2
0 (D;R3)). (52)
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Pressure estimates and pointwise convergence of
the fluid density

The detailed analysis yields the estimates needed to deal with the
nonlinear pressure, p(ρ) = aργ , obtain pointwise convergence of
the fluid density ρ, and pass to the limit in (39), (40). In particular,∫

K
p(%ε,ω)%νε,ω dxdt ≤ c(K ) for any compact K ⊂ Q f , (53)

and these estimates can be extended up to the boundary, and

ρε,ω → ρω in Lq((0,T )× D) for any 1 ≤ q < γ.
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Convergence in the set Qs

The convergence of the densities in the “solid” part of the domain
play a crucial role in the analysis. Establishing that,

%(t, x) = 0 for a.a. (t, x) ∈ Qs

relies on regularizing the equation of continuity and employing the
commutator lemma of DiPerna and Lions. It remains to show that

η(t, x) = 0 for a.a. (t, x) ∈ Qs .

The cutoff function χ(t, x) satisfies the transport equation (28). In
anticipation of using a suitable (smooth) test function, consider
instead the unique function χ ∈ C∞(R3) solving

∂tχ+ V · ∇xχ = 0 t > 0, x ∈ R3,
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with the initial data satisfying

C∞(R3) 3 χ(0, ·) =

{
> 0 x ∈ D\Ω0

< 0 x ∈ Ω0 ∪ (R3\D̄)
, ∇xχ0 6= 0 on ∂Ω0.

We define the level-set test function,

ϕξ =


1 χ ≥ ξ
χ

ξ
0 ≤ χ < ξ

0 χ < 0

= min

{
χ

ξ
, 1

}+

, (54)

supported on D\Ωτ , see [?], [?].
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Lemma

Let{
ηε,ω ∈ L2(0,T ;W 1,1(D)) ∩ L1(0,T ;W 1, 3

2 (D)), ηε,ω ≥ 0,

uε,ω ∈ L2(0,T ;W 1,2(D;R3))

be a weak solution of the Smoluchowski equation that is, (41),
holds for all ϕ ∈ D([0,T )×D) and any T > 0. Let the initial data
satisfy

η0 ∈ L2(D) ∩ L1
+(D), η0

∣∣
D\Ω0

= 0.

Then for ξ > 0 and χ defined as above, it holds that

lim
ξ→0

1

ξ

∫ τ

0

∫
{0≤χ̄<ξ}

(η∇xΦ +∇xη) · ∇x χ̄ dxdt = 0, (55)

for any τ > 0.
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Proof.

Plugging (54) into (41) and rearranging we get that

1

ξ

∫ τ

0

∫
{0≤χ<ξ}

(ηε,ω∇xΦ +∇xηε,ω) · ∇xχ dxdt =

1

ξ

∫ τ

0

∫
{0≤χ<ξ}

ηε,ω(uε,ω − V) · ∇xχ dxdt +

∫
D
η0,ε,ωϕξ(0, ·) dx .

(56)
Since we can pass ε, ω → 0 on the left side in (56), it suffices to
show that right side vanishes as we take ε, ω → 0 and ξ → 0
successively. First,

lim
ε,ω→0

∫
D
η0,ε,ωϕξ(0, ·)dx =

∫
Ω0

η0ϕξ(0, ·)dx = 0,

since on Ω0, we have χ(0, ·) < 0 and so ϕξ(0, ·) = 0.
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Now,

lim
ε,ω→0

1

ξ

∫ τ

0

∫
{0≤χ<ξ}

ηε,ω(uε,ω − V) · ∇xχ dxdt

=
1

ξ

∫ τ

0

∫
{0≤χ<ξ}

η(u− V) · ∇xχ dxdt = 0,

since u = V a.e. in D\Ω0, i.e. where χ ≥ 0, using (??). Letting
ξ → 0 concludes the proof of the lemma.
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Lemma

Under the same conditions as lemma 12, the following holds,

η(τ, ·)|D\Ωτ = 0 for a.a. τ ∈ [0,T ].
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Proof.

First note that by choosing a test function having the form

ϕn = ψn(t)ϕ(t, x), ϕ ∈ C∞c ([0,T )× D̄), ψn → 1[0,τ) as n→∞,

and ψn ∈ C∞[0,T ), we can rewrite the weak form (??) as∫
D
ηε,ω(τ, ·)ϕ(τ, ·)− η0,ε,ωϕ(0, ·) dx (57)

=

∫ τ

0

∫
D
ηε,ω(∂tϕ+ uε,ω · ∇xϕ)− (ηε,ω∇xΦ +∇xηε,ω) · ∇xϕ dxdt,

for any ϕ ∈ C∞c ([0,T )× D̄).
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It suffices to establish that∫
D\Ωτ

η(τ, ·) dx = 0, a.a τ ∈ (0,T ).

Inserting ϕξ into (57), using the initial conditions, and letting
ε, ω → 0 yields, ∫

D
η(τ, ·)ϕξ(τ, ·)dx = (58)

1

ξ

∫ τ

0

∫
{0≤χ<ξ}

η(u− V) · ∇xχ− (η∇xΦ +∇xη) · ∇xχ dxdt.

Since ϕξ(τ, ·)→ 1D\Ωτ as ξ → 0 in any Lp(D), p <∞, and

η ∈ L2(0,T ; L3/2(D)), the left-hand side of (58) converges to∫
D\Ωτ

η(τ, ·) dx ,

as ξ → 0. Finally, using Lemma 12 and that u = V for any ξ > 0,
it is clear the right hand side of (58) vanishes as ξ → 0.
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Singular limits: The limit ω → 0

Performing the limit ε→ 0, we arrive at the weak formulation of
the momentum satisfied, except for the following term∫ ∞

0

∫
D

(µω∇xuω + λωdivxuωI) : ∇xϕ dxdt. (59)

Using the viscosity penalization (39) (similarly for λω), vanishing in
((0,T )× D)\Q f and using that uω = V here, we conclude that∫ T

0

∫
D\Ωt

(µω∇xuω + λωdivxuωI) : ∇xϕ dxdt → 0 as ω → 0.
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Remark.

In fact when letting ε, ω → 0 in the momentum equation, the
penalization term remains as a weak limit,

uε,ω − V

ε
⇀ h in L1(Qs),

This term, which appears artificially in the solid domain, is then
removed in the weak formulation by proper choice of test functions.
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