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The equations of elasticity

0%y aow
27— div——
ot? N oF (Vy)
motion y(x,t)
velocit = a—y
Y - ot
deformation gradient F =Vy
Q Qt = Yt(ﬂ)
balance of mass po = pdet F
2
balance of momentum poa—t}zl =divS + pob

Hyperelastic S = 2% (F)
W(F) stored energy
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The equations of elasticity — Requirements

o I\IA’I‘I-ZI{IAL FRAME INDIFFERENCE
W(QF) = W(F) VY QeO?

@ REALIZIBILITY OF MECHANICAL MOTIONS
avoid interpenetration of matter

at least positivity of the Jacobian

detF >0
W(F)
W(F) - o0 as detF —0
— > It is too restrictive to take W/(F) convex
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at":ioz = aa Vi

ow
atV,' = aaﬁ(F)

aaFi,B - a,BFia =0

1, ow\

Hyperbolicity <= W(F) s rank-1 convex

Energy identity

<:>a27W(F) Ei€vavg >0 VE#0,ve8?
3/:;a8/:j/3 iSjValV/p ’
AM=...2%=0

wave speeds (d = 3) are :
A7...\12 = £V e.v. of accoustic tensor
OBJECTIVE
Conservation law theory is intricately connected to notion of convexity
What can be said regarding dynamics when the assumption of convexity is relaxed
?
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Calculus of variations and elastodynamics

The Euler-Lagrange equations of the minimization problem

are the system of elastostatics d, 2% 5F. Y (Vy)=0

Critical points of the target problem for the functional

Iyl = / / S|yel? = W(Vy)dxdt

provide solutions of the elastodynamics system

ow
at?yl = axa a?(vy)

The functional J is indefinite
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Variational approximation — 1d

4]
6?)’ = 0W'(yx) = _*(/ W(YX)dX>
oy
time-step discretization: iterates y/ solve

yi— 2yl 4 yi=2

Constructed via the variational problem

min /%(v —v92 4+ W(u) dx

0
=v, /I

u—u
h

%y , =
where v = 3, u = y,.

a Scheme emerges from a marching algorithm
rather than a target variational problem

b Scheme produces entropy weak solution for dimension d =1

Bemoulini-Stuart=T. ‘00
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Notions of convexity from elastostatics

min I[y]:/QW(Vy)dX

yeWI,oo
W(F) is rank-1 convex

ow
strong ellipticity of the E-L equations : 0

Xev aF’a (Vy) =0

W(F) is quasiconvex if
/ W(F +Vo(x))dx > W(F)IQ VFe M3 ¢ecC(Q)
Q
equivalent to w.ls.c. of I[y] = [, W(Vy)dx in W1

Vy,=~Vy = / W(Vy)dx < Iiminf/ W(Vy,) dx
Q Q

W(F) is polyconvex
W(F) = g(F,cof F,det F) = go ®(F)  with g(Z) convex
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Elastostatics — null Lagrangeans

The integrand ®(F) is a null-Lagrangean iff

/¢(Vy+v¢) dx = / O(Vy)dx Vye WP ¢ec C®
Q Q

®(F) is null-Lagrangean
— / O(F+Ve)dx=d(F)|Q] VFeM>*3 pecC>
Q

< O(F)=aF +pcof F+cdetF

oP B oy

If ®(Vy) is null-Lagrangean then it is weakly continuous in WP,

J=Ball 77, J.-Ericksen 62

A. Tzavaras (KAUST ) polyconvex elasticity Athens, Jan 2016 9 /31



Polyconvexity

W(F) = g(F,cof F,det F) = g o ®(F)

with g(=) a convex function

role of polyconvexity in elastostatics:
e w.ls.c. in Wb of

Iyl = /Qg o ®(Vy)dx

emerges from convexity of g(=) and the weak continuity of ®(Vy)

@ In polyconvex class one achieves existence of minimizers for potentials
satisfying
W(F) - oo asdetF —0

A. Tzavaras (KAUST ) polyconvex elasticity Athens, Jan 2016 10 / 31



Transport identities

Null-Lagrangeans

o o
8a<8F;a(vy))_O in D

Transport identities

8t":ioz = aocVi
oA oA
A = —_ H =
9k @7(F) = aF,aa = % (aF,-a V’) A=1,..,19
explicitly
0

0
adetl‘: = %((CO{:F),‘OCV,')

0 0
a(cof Fiy = @(EUkﬁaﬁvFjﬁW)

T. Qin 98
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The augmented elasticity system

Elasticity with transport identities; variables (v, F)

0= 0, (SN S ()

Or(F)* = 0, (g::(F) v,-> ,

SYMMETRIZED ELASTICITY SYSTEM; variables (v, =)

B og ,—, 00"
O0rvi = Oa (85“(_)81:,@(,:)>

oA
—A _ .
=0 = aa(a,__ia(F) v,) )

both subject to the propagating constraint - involutions

8(1/:,',(3 — 3/3/:;@ =0
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Properties of the extension

(a) Elastodynamics is viewed as a constrained evolution:

(b) The enlarged system admits a strictly convex entropy

n(v,Z) = SV + 8(3)

and is thus symmetrizable

2 <;v|2 +g(E)> ~ 0, Q%ﬁ?%?) ~0
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Relative entropy in conservation laws - Stability

system of conservation laws Oru+divF(u)=0

with convex entropy
u entropy (approximate) solution On(u) +divg(u) = —p <0
i smooth (conservative) solution on() +divg(a) =0

relative entropy n(uld) = n(u) —n(a) — Vn(a)(uv — )

Oun(u]@) + div g(u]@) = —p — (V20(8)0,a ) F(u]d)
< O(1)|u — o’

Dafermos 79, DiPerna 79
Based on
n — q is entropy - flux pair  V2n(u)VF(u) = VF(u)TV?n(u)

n(u) convex

1]
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Uniqueness of smooth within mv solutions

small

V =V(x,r), U=<w,A>is mv entropy solution of system of conservation
laws

0:U +div < V(x,t)> f(A)>=0
o < V(X,t)an()‘) > +div < V(x,t)» Q()\) > = gt <0

relative entropy  n(u|d) = n(u) —n(d) — Vn(a)(u — 0)
satisfies

Or < Vet, n(N|T) > +div < vy, gq(NT) > < O(1) < vr, [N — O(x, t)* >

provides control of the variance [ |\ — U(x, t)[2dvy ¢())

uniqueness of smooth within entropic mv solutions

Brenier-DelLellis-Szekelyhidi 11 = Demoulini-Stuart-AT 11
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Relative entropy for polyconvex elasticity

atFia = aa Vi

v, F) approximate solution o
(v.F) app Oevi = O (g 0 O(F)) + 20

8tFia = aa Vi

(v, F) smooth solution of 9
Devi = D 52— (g 0 9(F))

relative entropy n((v, F)|(¥, F)) = %|V — 7P +g (¢(F)|¢('E))

A
relative flux g ((v, F)|(V, F)) = (%(CD(F)) _ 8aEgA (q;(/:')))(v,- — V;)%(F)
Otlret + div Gres + [V (v — V) = O(1)|®(F) — &(F)|* + O(e)

Convergence as € — 0 to smooth solutions of polyconvex elasticity when g is
strictly convex. Convergence in the norm:
=12 £\ [2
v =52+ 0(F) - o(F) |
Dafermos, -Lattanzio-AT 06
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Variational approximation 3-d

82)/,' ow
g~ 9 gr. (V)
Time-step discretization - step size h
(-1)
vi—20+y; 7 OW
- =0ayp (Vy)
Question: G

To construct a stable approximation
scheme, variational in nature, marching in time.

It has to be energy conservative
on strong solutions and energy dissipative on shocks.

Euler-Lagrange equations for the minimization problem

= 2y0 4 (T2
min/Q 17 y’2h—|2—y’ | + W(Vy)dx

Open problem: Whether for W(F) quasiconvex the scheme decreases the
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W(F) = g o ®(F) polyconvex

Opvi = Do (855( )SZZ(F))

oA
—=A _ .
=" = &X(af__ia(/:) v,) .

the symmetrized elasticity system and null-Lagrangians suggest the
implicit-explicit iterative scheme

J J—-1 b

T = e () g )

e G R L
= g (e )
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Iterates (v, =) are constructed by solving the constrained variational problem
Given V9, =0 = (F° 7% w?),

min/ (1|v—v0|2—|—g(F,Z,w)> dx
s\ 2

over the affine subspace
C:= {(v, F,Z,w):T% — R* subject to the constraints
1 0
E(Fia - Fia) - aavia
1
72y = Z2)) = Oaleipeapy Fipvi)

1 0 0
E(W_W ):aa((COfF )iavi) }

Iterates decrease the mechanical energy, obey bounds

wp [ 1V +5(=) e I = ¢ 2 < B
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Under coercivity for g and bounds for g and g—g we have

v~ v wkin L2

(Fh z" wh)y = (F,Z,w) wkin [P x L9xL"

and (v, F) is a measure-valued solution of elasticity, which satisfies the weak
from of the geometric transport identities
Demoulini-Stuart-AT 01

Uniqueness of classical solutions for polyconvex elasticity within the class of
measure-valued solutions
Demoulini-Stuart-AT 11

Let (7, F) be a smooth solution of elasticity defined on [0, T], T < T*. The
approximation scheme converges for T < T*

/|vh — P + g (Z"|0(F)) dx < g(wvﬁ)(vg’ — %, =8 — EO) + O(h)
Miroshnikov-AT 14
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Existence of dissipative mv-solutions

Under coercivity for g and bounds for g and 2 5% we obtain a Young measure
v and a nonnegative concentration measure 7y(dxdt) such that

v~ v wkin L2
(Fh Z" wh) — (F,cof F,det F)  wkin LP x L9 x L"
where F = (v, Ag), v = (v, \,) satisfy

0G oA
Oevi — O <V 3—A )‘ )al_— ()‘F)>

oA
D PA(F) — aa(a?(F)v,-) =0

// Vn +’y)dxdt+/9 Yno(x)dx >0,

for test functions 0(t )

and

i.e, (v, F) is a dissipative measure-valued solution of elasticity, which
satisfies the weak from of the geometric transport identities
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Let v, v, v, F be a dissipative measure valued solution and ¥, Fewb>,
Lipschitz solution. Then

[ (O 7)) ax < ([ (00, o)l Fo)) i) e

where (v, F)|(7.F)) = 5 |v — o + g (¢(F)|(F))

Based on an averaged relative entropy calculation and using the weak form
of the transport identities and the null-Lagrangean property.

Uniqueness of classical solutions for polyconvex elasticity within the class of
dissipative mv-solutions:

If vo = 0o and Fo = Fo then

(Vv F) = (‘77 'E)v V:(SQ(X’t)’ﬁ(X,t), v=0on QT
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Application — Lattice models of elastic response

Lattice approximation of one dimensional elastodynamics by a spring-mass system
@ each atom has identical mass ep = 27 (total mass 2p)
o Potential energy by V = S ! W(*2=), with W strictly convex

@ Lagrangian

N—
ep Xi+1 — Xi
L=T - —X —_ ).
VoY L ()

i=0

V,':).(,'

dv; 1 Xjt1 — X; Xi_1
Vi 2 SN o i
PG = (W s w )

Set
Y(t, X;) = xi(t) where X; = ic

then formally Y satisfies the nonlinear wave equation
Ytt = aX W/(YX)

Athens, Jan 2016
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Introduce approximate solution y by piecewise linear and piecewise
constant interpolation

Uniform bounds [(y)? + W(yS)dx < C
y® — y induces a measure-valued solution that is conservative

Convergence before shock formation is an application of the relative entropy
method, measure valued wk versus strong uniqueness.

Approximation is dispersive, so the relation of the two systems beyond shock
formation is an outstanding open problem
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Relaxation Approximations of Elasticity

A
3tv,-—8a( Aad) )ZO

" OF.
OcFio — Oavi = 0
o0 (v - F2hem) ) = -1 (4~ S5 @)

Limit as € — 0 polyconvex elasticity system

605 8¢A o
6tV,' — aa (aEA(q)(F))aF’a) =0

OtFia — Oqvi =0

This relaxation system is equipped with a globally defined entropy (free energy)
with W convex

1 2
SIVE + V(o (F),7)

Relative entropy yields stability theory for the relaxation limit
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Relaxation to gas dynamics

for a gas: W(F) = g(det F) := e(%) o det F where e(p) internal energy

in Lagrangean coordinates

1
det F

OtVv; — Oa (|:7p/( )+TA:| COfF,'a) =0

OtFiq — Oav;i =0

1 1 1
OGmh=_—= (A -
o e (T +pe(F) pl(detF))

1

in Eulerian coordinates — p = ¢

Oup -+ 0(p) = 0
0c(pw) + By(ovivy) = 9 (=pi(p) + 1)
0u(pm) + 3i(pvi) = = plr — pi(p) + pE(o)]

Additive decomposition of pressures to instanteneous and equilibrium pressures (but not
of the Piola-Kirchhoff stresses)

System has a global thermodynamical structure, globally defined entropy that dissipates
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Radial isotropic elasticity

@ Radial motions

W(F) = &(wr, =, =)

isotropic material ® symmetric function and polyconvex, e.g.

1
b=
2(
1
Wit = g

v+ vE 4+ v3) + h(vivaws)

with h(d) — 400 as & — 0+

oo w w ov 0P w w
v (wr: - R)> (aTz+av3)(WR’R 7

@ To represent a physically realizable motion: det F > 0 with F = Vy.

A. Tzavaras (KAUST )

det F = wr(w/R)? >0
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Null-Lagrangians: Potential energies W(vy, v, v3; R) for which the functional

1
wow
W= [ ((wr 5. 5)iR)
has variational derivative zero: W = vi, yvaR, vivzR, vivov3R?

Euler-Lagrange identities
*8RW,1 + Rt (w’z + \U73) =0 Vw.

transport identities
OV =0r(V1v)

It is possible to write (more than one) extended systems for polyconvex radial

elasticity that achieve a convex entropy

A. Tzavaras (KAUST ) polyconvex elasticity
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Question: Is it possible to construct a variational approximation scheme for radial
polyconvex elasticity that preserves the positivity of Jacobian determinants and is
consistent with entropy dissipation.

Change of variables: p = R3, o = w3. In the new variables det F = «,

Extended system:

dev =0, (3027 G(2) QM) - p71* G4(2) (@) + (1))

08 = 0,(3v)
e = 30?3y
ey = 2a'3v

a(l) = )‘7 @ Z 07 O‘p > 07 (pv t) € (Oa ]-) X [0,00),

where 8 = % and v = w?, Q'(T) the null-Lagrangeans in the new variables.
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1
minimize [/(a, 8,7,v) = E(v —w)?+G(=E)dp

S~ 5~

1
E(V —v)? + ... + h(a,) dp

over the set of admissible functions
Ay = {(a,ﬁm, v) e X :a(0) >0, a(l)=A, o >0a.e. and

(1) (e, By, v) < o0, @ —

(o _hO‘O) — 30023, (v _h’YO) _ 20401/3‘/}.

3V,

The differential constraints in (1) are affine, the condition (1) = X corresponds
to the imposed boundary condition y(x) = Ax, while @’ > 0 secures the positivity
of determinants
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existence of minimizers
Euler-Lagrange equations are satisfied
regularity of minimizers

the iterates satisfy the constraint of positive Jacobian and invertibility
the iterates satisfy a discrete version of entropy inequality

(5 +63) - (5 +6=)
h

d 2/3 ¢~ (=\Oi (10
p <3p Gi(=)Q (T )v) <0

Miroshnikov-AT 10
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